
IACR Transactions
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–55. DOI:XXXXXXXX

Spook: Sponge-Based Leakage-Resistant
Authenticated Encryption with a Masked

Tweakable Block Cipher
Davide Bellizia1, Francesco Berti1, Olivier Bronchain1, Gaëtan Cassiers1,
Sébastien Duval1, Chun Guo2, Gregor Leander3, Gaëtan Leurent4, Itamar
Levi1, Charles Momin1, Olivier Pereira1, Thomas Peters1, François-Xavier

Standaert1, Balazs Udvarhelyi1 and Friedrich Wiemer3

1 ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
2 School of Cyber Science and Technology and Key Laboratory of Cryptologic Technology and

Information Security, Ministry of Education, Shandong University
3 Horst Görtz Institute for IT Security Ruhr-Universität Bochum, Germany

4 Team SECRET, Inria Paris Research Center, France
https://www.spook.dev/

Abstract. This paper defines Spook: a sponge-based authenticated encryption with
associated data algorithm. It is primarily designed to provide security against
side-channel attacks at a low energy cost. For this purpose, Spook is mixing a leakage-
resistant mode of operation with bitslice ciphers enabling efficient and low latency
implementations. The leakage-resistant mode of operation leverages a re-keying
function to prevent differential side-channel analysis, a duplex sponge construction to
efficiently process the data, and a tag verification based on a Tweakable Block Cipher
(TBC) providing strong data integrity guarantees in the presence of leakages. The
underlying bitslice ciphers are optimized for the masking countermeasures against
side-channel attacks. Spook is an efficient single-pass algorithm. It ensures state-of-
the-art black box security with several prominent features: (i) nonce misuse-resilience,
(ii) beyond-birthday security with respect to the TBC block size, and (iii) multi-
user security at minimum cost with a public tweak. Besides the specifications and
design rationale, we provide first software and hardware implementation results
of (unprotected) Spook which confirm the limited overheads that the use of two
primitives sharing internal components imply. We also show that the integrity of
Spook with leakage, so far analyzed with unbounded leakages for the duplex sponge
and a strongly protected TBC modeled as leak-free, can be proven with a much weaker
unpredictability assumption for the TBC. We finally discuss external cryptanalysis
results and tweaks to improve both the security margins and efficiency of Spook.
Keywords: Authenticated encryption · NIST lightweight cryptography standardization
effort · leakage-resistance · bitslice ciphers · masking countermeasure · low energy

1 Introduction: design rationale and motivation
Spook is an Authenticated Encryption scheme with Associated Data (AEAD). Its primary
design goals are resistance against side-channel analysis and low-energy implementations
(jointly). The motivation for the first goal stems from the observation that lightweight
devices may be deployed in environments where they can be under physical control of
an adversary, yet be responsible for sensitive tasks, or be the root of critical distributed
attacks starting from seemingly non-critical connected objects [RSWO18]. As a result, the

Licensed under Creative Commons License CC-BY 4.0.
Received: 20XX-XX-XX, Accepted: 20XX-XX-XX, Published: 20XX-XX-XX

https://doi.org/XXXXXXXX
https://www.spook.dev/
http://creativecommons.org/licenses/by/4.0/


2 Spook

ability to provide side-channel resistance (and possibly resistance against fault attacks)
easily and at low cost was identified by the NIST as a desirable feature for lightweight
cryptography.1 The motivation for the second goal stems from the observation that energy
is a suitable metric to compare the performances of cryptographic algorithms [KDH+12],
and a relevant one from the application viewpoint. It is in particular increasingly needed
for battery-operated / energy harvesting devices, for example in the IoT [MMGD17].

In order to reach these goals, Spook builds on and specializes two main ingredients.
The first ingredient is a leakage-resistant mode of operation that enables efficient

side-channel secure implementations. We use the TETSponge mode of operation for this
purpose [GPPS19b], which is the lightweight variation of a sequence of works aiming at high-
physical security guarantees for (authenticated) encryption [PSV15, BKP+18, BPPS17,
BGP+20]. For integrity, TETSponge reaches the top of the definitions’ hierarchy established
in [GPPS19a], namely Ciphertext Integrity with Misuse and Leakage in encryption and
decryption (CIML2), in a liberal model where all the intermediate computations are leaked
to the adversary, except for a long-term secret key that is only used twice per encrypted
or decrypted message. For confidentiality, TETSponge reaches security against Chosen
Ciphertext Adversaries with misuse-resilience and Leakage in encryption (CCAmL1).
Compared to related works with constructions additionally achieving CCA security with
decryption leakages (i.e., CCAmL2 [GPPS19a]), the TETSponge mode has the significant
advantage of being single-pass in encryption and in decryption, which we believe is essential
for lightweight implementations.2 Concretely, TETSponge encourages so-called leveled
implementations, where (expensive) protections against side-channel attacks are used in
a limited way and independent of the message size, while the bulk of the computation
is executed by cheap and weakly protected components. As exhibited in [BGP+20]
and [BBC+20] for software (resp., hardware) implementations, leveled implementations
allow significant energy gains when side-channel protections must be activated.

The second ingredient is the adoption of regular symmetric primitives to operate the
TETSponge mode of operation, namely the Clyde-128 Tweakable Block Cipher (TBC) and
the Shadow-512 permutation, both based on simple extensions of the LS-design framework,
which aims at efficient bitslice implementations [GLSV14]. In order to facilitate leveled
implementations, those primitives use components that can be efficiently masked against
side-channel attacks for the TBC (e.g., with [CGLS20] in hardware or [GR17] in software),
and enable fast implementations for the permutation. They bring two main improvements
compared to earlier proposals of LS-designs. On the one hand, they leverage the tools
introduced by Beierle et al. [BCLR17] in order to prevent the invariant attacks that
put several earlier LS-designs at risk [LMR15, TLS16]. On the other hand, they replace
the table-based L-boxes used in previous LS-designs by word-level L-boxes that can be
efficiently implemented as a sequence of rotation and XOR operations, which is beneficial
to prevent cache attacks [TOS10]. As a result, both Clyde-128 and Shadow-512 enable
efficient bitslicing and side-channel resistant implementations on a wide range of platforms,
(e.g., 32-bit microprocessors such as increasingly used in mobile applications and dedicated
hardware or FPGAs). Both primitives also share the same S-box and L-box in order to
limit the implementation overheads in case of unprotected implementations.

The motivations for using two symmetric primitives in TETSponge are twofold. First,
an invertible (tweakable) block cipher is instrumental to reach CIML2 security in the
unbounded leakage model [BPPS17]. Second, duplex sponge constructions are in general
attractive for efficient AE: they can achieve this functionality in a single pass, are highly
flexible and ensure nice security bounds in the multi-user setting [BDPA11, DMA17].

1 https://csrc.nist.gov/projects/lightweight-cryptography.
2 We use the definition of misuse-resilience of Ashur et al. [ADL17] rather than the definition of misuse-

resistance of Rogaway and Schrimpton [RS06] for a similar reason (i.e., to avoid the need of two passes).

https://csrc.nist.gov/projects/lightweight-cryptography
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Sponge constructions are also believed to provide some leakage-resistance (or resilience)
by design [DEM+17]. Spook combines the advantages of both. Eventually, and besides
these main features, Spook inherits other interesting properties from the TETSponge mode
of operation: (i) it is secure beyond the birthday bound (with respect to the size n of
the TBC), and (ii) it can provide n-bit multi-user security at low cost with a public
tweak. We additionally note that an important aspect of our security claims is that we
consider security definitions that allow all the computations (including the computation
of the “challenge ciphertext”) to leak, which we denote as leakage-resistance (following
the terminology in [GPPS19a, Sta19]). This is in contrast with alternative definitions of
leakage-resilience excluding the leakage of the challenge ciphertext (e.g., [BMOS17]).

Besides specifications and design rationale for the mode and primitives, we provide first
software and hardware implementation results of (unprotected) Spook and confirm the
limited overheads that our use of two primitives with shared S-boxes and L-boxes imply.
We also show that the integrity of Spook with leakage, so far analyzed with unbounded
leakages for the duplex sponge and a strongly protected TBC modeled as leak-free, can be
proven with a much weaker unpredictability assumption for the TBC, extending a recent
result of Berti et al. to Spook [BGP+19]. We finally discuss external cryptanalysis results
and tweaks in order to improve both the security margins and efficiency of Spook.

2 Specifications

2.1 The TETSponge mode of operation
Notations. We denote the plaintext as M . It is parsed into ` blocksM [0],M [1], . . . ,M [`−
1], where the size of blocks 0 to `−2 is r and the size of the last block is 1 ≤ |M [`−1]| ≤ r.
We denote the associated data as A. It is parsed into λ blocks A[0], A[1], . . . , A[λ − 1]
in the same way as the plaintext. We denote the τ -bit nonce as N and the key as K||P ,
where K is a long-term secret key of n bits, and P is a public tweak of n − 1 bits (one
bit is used to separate key and tag generations with the TBC).3 The secret key K has to
be selected uniformly at random in {0, 1}n. The public tweak P is set to an (n− 1)-bit
zero vector in case only single-user security is requested. In case multi-user security is
requested, a long-term “public key” p of n− 2 bits must be selected uniformly at random,
since the instance of TBC we propose next is not designed to resist related-tweak attacks,
and P is set to p||1 (so one bit is used to separate the single-user and multi-user security
variants). As a result, the TETSponge[E, π](A,M , N,K||P ) mode of operation relies on a
TBC with n-bit blocks, tweaks and keys, denoted as E, and an (r + c)-bit permutation
denoted as π. Our primary parameters are n = 128, r = 256, c = 256 and τ = 128.

Conventions. TETSponge operates over bitstrings (i.e., each of the manipulated data –
the plaintext, associated data, ciphertext, keys and nonce – is a sequence of bits). The
Spook cipher is however defined for bytestrings (i.e., each of the manipulated data is a
sequence of bytes). For encryption, input data (i.e., plaintext, associated data, keys, nonce)
bytestrings are first mapped to bitstrings using the BMAP function defined next, and
the ciphertext is converted back to a bytestring using the inverse of the BMAP function.
The operations are the same for decryption, except that the plaintext and ciphertext are
swapped. BMAP maps bytes to bits in little-endian order. More precisely, it takes as
input a sequence of bytes of length q: (X[0], . . . , X[q − 1]) and outputs a sequence of bits
(Y [0], . . . , Y [8q − 1]), where Y [8i+ j] = (X[i]/2j) mod 2 for 0 ≤ i < q and 0 ≤ j < 8. As
a result, the nonce N , the private part of the key K and (when applicable) its public part
p are all 16 bytes long. In order to get the bitstring p (which has a length of 126 bits) from
the corresponding bytestring, the last two bits are discarded after application of BMAP.

3 So in our reference implementations, K||P is the key input string required by the NIST API.
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The encryption. The encryption of the 4-string input (A,M , N,K||P ), illustrated in
Figure 1, first derives an n-bit initial seed B by using a TBC call EP ||0K (N ||0∗). The initial
seed B is used as a fresh key for an inner keyed duplex sponge construction, to process A
and M and produce C. Two bits are used for domain separation, in order to distinguish
M from A and mark if the last blocks of A and M are of full r bits or not. Let U ||V
be the first 2n− 1 bits of the final state, with |U | = n. The tag Z is produced by using
another TBC call EV ||1K (U), where the 1 concatenated with V guarantees that this tweak
is different from the one used to generate B. The ciphertext is made of ` − 1 blocks of
r bits, a final block of length 1 ≤ |C[`− 1]| ≤ r and an n-bit tag. We next denote it as
C := c||Z := C[0]|| . . . ||C[`− 1]||Z (i.e., c is the ciphertext excluding the tag).
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Figure 1: TETsponge mode with TBC E and permutation π, applied to a 2-block A and a
3-block M . The value 01||0c−2 is inserted only if |A[λ− 1]| < r (resp., |M [`− 1]| < r)).

The decryption. In order to decrypt the 4-string input (A,C, N,K||P ), the mode first
derives the initial seed B via EP ||0K (N ||0∗), as when encrypting. It then runs the inner
keyed duplex sponge construction on A and c to derive M and the (2n− 1)-bit truncated
state U ||V . Finally, it makes an inverse TBC call U∗ =

(
EV ||1K

)−1(Z), and outputs M if
and only if there is a match U∗ = U . In this way, invalid decryption only leaks meaningless
random values U∗, instead of the correct tags (so cannot be used for forgeries).

More precisely, the specification of TETSponge[E, π].Enc and TETSponge[E, π].Dec are
given in Appendix A, Algorithms 3 and 4. The different cases that the TETSponge mode
can encounter are additionally illustrated in Appendix B, Figure 3.

2.2 Clyde-128, a Tweakable LS-Design
The TETSponge mode of operation requires a TBC. We use the Tweakable LS-Design
(TLS-design) framework introduced as part of the SCREAM authenticated encryption
candidate to the CAESAR competition for this purpose [GLS+14]. TLS-designs are
tweakable variants of the LS-designs which specify a family of bitslice ciphers aimed at
efficient masked implementations [GLSV14]. Such ciphers work on n = (s · l)-bit states,
where the size of the S-box is s and the size of the L-box is 2l. We denote the full cipher
state as x, a state row as x[i, ?] (0 ≤ i < s) and a state column as x[?, j] (0 ≤ j < l).
Concretely, we consider s = 4 and l = 32. Although the internal representation of the data
is a (s · l)-bit matrix, the cipher operates over bitstring inputs and outputs. The mapping
between a bitstring B and the corresponding bit matrix x is x[i, j] = B[i · l + j].

From an implementation viewpoint, the S-boxes and L-boxes are defined such that they
can always be executed thanks to simple operations on the rows (typically corresponding
to processor words). The 2l-bit L-boxes are slightly different from (l-bit) L-boxes that were
used in the original LS-designs. As will be clear in Section 2.4, they enable a better branch
number at limited cost. In summary, Clyde-128 (illustrated in Appendix C) updates the
n-bit state x by iterating Ns steps, each of them made of two rounds (so Nr = 2Ns).

One significant advantage of these designs is their inherent simplicity: they can be
described in few lines, as illustrated in Algorithm 1, where µ denotes the plaintext, TK a
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Algorithm 1 TLS-design with 2l-bit L-box and s-bit S-box (n = s · l)
x← µ⊕ TK(0); . x is a s× l bits matrix
for 0 ≤ σ < Ns do

for 0 ≤ ρ < 2 do
r = 2 · σ + ρ; . Round index
for 0 ≤ j < l do

x[?, j] = S(x[?, j]); . S-box Layer
for 0 ≤ i < s/2 do

(x[2i, ?], x[2i+ 1, ?]) = L(x[2i, ?], x[2i+ 1, ?]); . L-box Layer
x← x⊕W (r); . Constant addition

x← x⊕ TK(σ + 1); . Tweakey addition
return x

combination of the master key K and tweak T that we call tweakey [JNP14], W (r) are
round constants, and S and L are an s-bit S-box and a 2l-bit L-box.4

We use SCREAM’s lightweight tweakey scheduling algorithm [GLS+14]. It takes the
n-bit key K and the n-bit tweak T as input. The tweak is divided into n/2-bit halves:
T = t0‖t1. Then, three different tweakeys are used every three steps as follows:

TK(3i) = K ⊕ (t0‖t1),
TK(3i+ 1) = K ⊕ (t0 ⊕ t1‖t0),
TK(3i+ 2) = K ⊕ (t1‖t0 ⊕ t1).

The tweakeys can be computed on-the-fly using a linear function φ, corresponding to
multiplication by a primitive element in GF (4) (with φ2(x) = φ(x)⊕ x, and φ3(x) = x):

φ : x0‖x1 7→ (x0 ⊕ x1)‖x0,

δ0 = T,

δi+1 = φ(δi),
TK(i) = K ⊕ δi.

2.3 Shadow-512, a Multiple LS-Design
The TETSponge mode of operation also requires a (larger) permutation. We use a simple
variant of the LS-designs that we denote as mLS-designs (standing for multiple LS-designs)
for this purpose. In summary, mLS-designs mix multiple LS-designs thanks to an additional
diffusion layer. Such ciphers work on n = (m · s · l)-bit states, where m is the number of
LS-designs considered, the size of the S-box is s and the size of the L-box is 2l. Taking
similar notations as for TLS-designs, we denote the full cipher state as x, each (s · l)-bit
substate corresponding to an LS-design as a bundle x[b, ?, ?] (0 ≤ b < m), a bundle row
as x[b, i, ?] (0 ≤ i < s) and a bundle column as x[b, ?, j] (0 ≤ j < l). Concretely, we will
consider m = 4, s = 4 and l = 32. Again, the internal representation of the data is an
(m · s · l)-bit state but the cipher operates over bitstring inputs and outputs. The mapping
between a bitstring B and a state x is x[b, i, j] = B[b · l · s+ i · l + j].

In summary, Shadow-512 (illustrated in Appendix C) updates the n-bit state x by
iterating Ns steps, each of them made of two different rounds (denoted as A and B): they
respectively apply an L-box to the rows of each bundle independently, and a diffusion layer
mixing the rows of different bundles (on top of the S-box layer). An accurate description
is given in Algorithm 2, where µ denotes the input, W (r) are round constants, S and L
are an s-bit S-box and a 2l-bit L-box and D is the m-bit diffusion layer.

4 For regularity (in hardware implementations), we keep the linear L-box in the last round.
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Algorithm 2 mLS-design with 2l-bit L-boxes and s-bit S-boxes (n = m · s · l)
x← µ; . x is a m× s× l bits matrix
for 0 ≤ σ < Ns do

for 0 ≤ b < m do . Round A
for 0 ≤ j < l do

x[b, ?, j] = S(x[b, ?, j]); . S-box Layer
for 0 ≤ i < s/2 do

(x[2i, ?], x[2i+ 1, ?]) = L(x[2i, ?], x[2i+ 1, ?]); . L-box Layer
x← x⊕W (2 · σ); . Constant addition
for 0 ≤ b < m do . Round B

for 0 ≤ j < l do
x[b, ?, j] = S(x[b, ?, j]); . S-box Layer

for 0 ≤ i < s do
for 0 ≤ j < l do

x[?, i, j] = D(x[?, i, j]); . Diffusion Layer
x← x⊕W (2 · σ + 1); . Constant addition

return x

2.4 Clyde-128 and Shadow-512 components
We now describe the components S, L and D and the round constants used in Clyde-128
and Shadow-512. Both ciphers are designed to enable simple (software and hardware)
implementations based on 32-bit word-level operations. For the S-box, we provide its
circuit representation (which can be applied in parallel to the 32 bits of a word). For
the L-box and diffusion layer, we provide a sequence of 32-bit operations. We denote the
bitwise AND as � and the left rotation of a word x by α bits as rot(x, α).

S-box. We use a variant of the 4-bit S-box used in Skinny [BJK+16], modified by replacing
the NOR gates by AND gates. It is given in Table 1, with numbers representing bitstrings
encoded in little-endian. That is, x =

∑3
i=0 2i · x[i] and S(x) =

∑3
i=0 2i · y[i]. It has linear

square correlation and differential probabilities 2−2 and algebraic degree 3.

Table 1: S-box in table representation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 8 1 15 2 10 7 9 4 13 5 6 14 3 11 12

Concretely, y = S(x) can be implemented serially with 4 AND gates and 4 XOR gates
in the direct and inverse directions. In the direct sense, it has an AND depth of two and
allows computing the two first (and two last) AND gates in parallel:

• y[1] = (x[0]� x[1])⊕ x[2], • y[0] = (x[3]� x[0])⊕ x[1],

• y[3] = (y[1]� x[3])⊕ x[0], • y[2] = (y[0]� y[1])⊕ x[3].

The S-box is illustrated in Appendix D and its inverse is given in Appendix E.

L-box. We use an interleaved L-box that applies jointly to pairs of 32-bit words and has
branch number 16 over those pairs. Denoting the words on which it applies as x and y:

(a, b) = L′(x, y) =
(

circ(0xec045008) · xᵀ ⊕ circ(0x36000f60) · yᵀ
circ(0x1b0007b0) · xᵀ ⊕ circ(0xec045008) · yᵀ

)
,
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where circ denotes the circulant matrix whose first line is given in hexadecimal notation,
so that the number b =

∑31
i=0 2ibi corresponds to the row vector (b0, . . . , b31).

Concretely, this L-box can be efficiently implemented (in the direct and inverse direc-
tions) thanks to six word-level (left) rotations and six 32-bit XORs per word as follows:

• a = x⊕ rot(x, 12), • b = y ⊕ rot(y, 12),

• a = a⊕ rot(a, 3), • b = b⊕ rot(b, 3),

• a = a⊕ rot(x, 17), • b = b⊕ rot(y, 17),

• c = a⊕ rot(a, 31), • d = b⊕ rot(b, 31),

• a = a⊕ rot(d, 26), • b = b⊕ rot(c, 25),

• a = a⊕ rot(c, 15), • b = b⊕ rot(d, 15).

The L-box is illustrated in Appendix D and its inverse is given in Appendix F. As previously
mentioned, such an interleaved L-box differs from the one used in the original LS-designs
(which works on l bits rather than 2l). The motivation for this choice is a better branch
number at limited implementation cost. Precisely, the best known non-interleaved 32-bit
L-box has branch number 12 and we reach 16 with this new solution. Exploiting such an
interleaved L-box implies that the S-boxes must have an even number of bits.

Diffusion layer (for Shadow-512 only). We use the diffusion layer of the low-energy
cipher Midori [BBI+15], which is based on a near-MDS 4× 4 matrix defined as follows:

(a, b, c, d) = D(w, x, y, z) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ·

w
x
y
z

 .

It has branch number 4 (an MDS diffusion would provide 5), is illustrated in Appendix D,
and can be implemented with six 32-bit XORs as a circuit with gate depth 2 as follows:

• u = w ⊕ x, • v = y ⊕ z,

• a = x⊕ v, • b = w ⊕ v,

• c = u⊕ z, • d = u⊕ y.

Round constants. Round constants for Clyde-128 are generated from a 4-bit LFSR. Each
state of the LFSR is used as the constant for a single round. The four bits are XORed
with the first bit of the four state rows. Precisely, the round constants are:

• Round 0: (1,0,0,0), • Round 1: (0,1,0,0), • Round 2: (0,0,1,0), • Round 3: (0,0,0,1),
• Round 4: (1,1,0,0), • Round 5: (0,1,1,0), • Round 6: (0,0,1,1), • Round 7: (1,1,0,1),
• Round 8: (1,0,1,0), • Round 9: (0,1,0,1), • Round 10: (1,1,1,0), • Round 11: (0,1,1,1).

For Shadow-512, we take exactly the same constants, but for each bundle b = 0, . . . ,m− 1,
we add the round constant on the bth bit of the four bundle rows, that is x[b, ?, b].

3 Security analysis and claims
We assume that all keys (so both the secret K and public p when applicable) are selected
uniformly at random, and that related keys are prevented at the protocol level.
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3.1 The TETSponge mode of operation
The black box security analysis of TETSponge is proven in the ideal TBC and permutation
models.5 CIML2 is proven under the additional assumption that the long-term key
of the TBC cannot be leaked (but all other intermediate values can be leaked in full).
The original proofs are made by modeling the strongly protected TBC as a leak-free
component. We show in Section 8 that this assumption can be relaxed to a falsifiable
unpredictability assumption. CCAmL1 security is proven under an oracle-free and bounded
leakage assumption. We refer to [GPPS19b] for details on these assumptions.

Based on the above, the single-user security claims of the mode are summarized in
Table 2. The bounds are close to 2n security and it is expected that the best adversar-
ial strategy is to try breaking the physical assumptions. A detailed discussion of how
such physical assumptions translate into heuristic security requirements can be found
in [BBC+20]. Informally, the CIML2 bound guarantees that message integrity reduces to
the security of the Clyde-128 implementation against Differential Power Analysis (DPA).
The CCAmL1 analysis is more subtle, but essentially guarantees that the confidentiality
of long messages reduces to the security of single-block messages against Simple Power
Analysis (SPA) and the security of the Clyde-128 implementation against DPA.6

Table 2: Single-user security claims.

Security model security (bits)
Plaintext confidentiality with nonce misuse-resilience (mR) n− logn
Ciphertext integrity with misuse-resistance (MR) & no leakage n− logn
Plaintext confidentiality with encryption leakages and mR ≈ n/2
Ciphertext integrity with full leakages and MR ≈ n− logn

The security claims for the multi-user variant of TETSponge are summarized in Table 3.

Table 3: Multi-user security claims.

Security model security (bits) # of users
Plaintext conf. with nonce misuse-resilience (mR) n− 2 logn ≈ 2n−2

Ciphertext int. with misuse-resistance (MR) & no leak. n− 2 logn ≈ 2n−2

Plaintext conf. with encryption leakages and mR ≈ n/2 ≈ 2n−2

Ciphertext int. with full leakages and MR ≈ n− 2 logn ≈ 2n−2

No additional restrictions are imposed on the message length. The security bounds in both
tables are for the total number of message and associated data blocks to encrypt.

3.2 From mode assumptions to primitives requirements
As always in cryptography, reductions in idealized models do not imply security when the
idealized components (e.g., permutations) are instantiated with practical primitives (e.g.,
Shadow-512). Therefore, it is important to consider the security of the resulting schemes
as a whole. The rationale behind the Spook design can be outlined as follows.

For integrity against leakage, the minimum requirements are that (i) the Clyde-128
TBC is a strongly unpredictable block cipher, as discussed in Section 8, and (ii) the hash
function corresponding to Figure 1 where B is public and with output U ||V is collision

5 Modeling permutations as ideal ones is necessary for the leakage analyzes in [GPPS19b] but black
box proofs under a strong pseudo-random permutation assumption should be feasible as in [BGP+20].

6 The birthday bound for CCAmL1 could be improved. We are not aware if matching attacks.
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resistant: this is because the integrity guarantees of Spook are in the unbounded leakage
model (where all intermediate values are leaked in full) with nonce misuse, so that the
difficulty to forge valid tags Z depends on the difficulty to find collisions for U ||V .

For the confidentiality of Spook against leakage, the minimum requirement is that
the combination of the Clyde-128 TBC with iterations of the Shadow-512 permutation
put in a duplex sponge construction yields pseudo-random outputs for the rate part of
the construction. This is because Spook only guarantees confidentiality in the nonce
misuse-resilience setting, so that for the challenge plaintext, the ephemeral key B is always
fresh.7 We note that we do not make any claims in line with the hermetic sponge strategy.
That is, we do not consider distinguishers for Shadow-512 as valid attacks, as long as they
do not directly break actual security requirements of the resulting mode.

3.3 The Clyde-128 (tweakable) block cipher
We next discuss the resistance of Clyde-128 with regards to several attack vectors that could
break its unpredictability (when taken as a stand-alone primitive) or pseudo-randomness
(in combination with the Shadow-512 permutation).8 We recall that the tweak of Clyde-
128 is either constant (as a zero vector or a public value) or pseudo-random and out of
adversarial control (for the tag generation). So while a standard TBC requires security
against chosen-tweak attacks, the number of rounds selected for Clyde-128 only corresponds
to single-key and random-tweak security. Chosen-tweak security for Clyde-128 could be
obtained by doubling the number of rounds, following the approach in [GPPR11].

Differential and linear attacks. The security of Clyde-128 against linear and differential
attacks can be analyzed thanks to the wide-trail strategy [DR01]. As usually, we restrict
to analyze average probabilities/square correlations of characteristics and for this assume
independent round keys. As mentioned above, the L-box has differential branch number
16 over pairs of bits entering the same S-box. This implies that any characteristic over
any step (two consecutive rounds) has at least 16 active S-boxes. Recall that the maximal
differential probability and maximal square linear correlation for our S-box is 2−2. As a
result, eight rounds (four steps) lead to an upper bound on the expected probability of any
differential characteristics of (2−2)4·16 = 2−128. Similarly, the average square correlation of
any linear characteristic over the same number of steps is bounded to (2−2)4·16 = 2−128 as
well. Our recommended parameters add four rounds (two steps) to prevent improvements
of these standard attacks (e.g., multiple approximations, improved guessing).

There exist several advanced variants of differential and linear attacks. We next briefly
explain why we think that they do not pose a threat for the security of Clyde-128.

Boomerang and differential-linear attacks. Those variants are in particular promising
if the probability of differentials and the correlations of linear approximations are high for
a small number of rounds but decrease very fast when increasing the number of rounds. As
we use the wide trail strategy, this is not the situation for our construction. For Clyde-128
the number of active S-boxes increases rather linearly in the number of rounds.

Truncated differentials. Truncated differentials aim at predicting not the exact difference,
but only a pattern in the output difference. One interesting special case is the one of a
single bit difference and predicting a single bit in the output difference for a few rounds
with high probability. This can be seen as a simple diffusion test, but it also gives
insights on truncated differentials and, as it is the same in this extreme case, experimental

7 This is in the single-user setting. Collisions on B can happen in the multi-user setting but are not
security-damaging since the nonce N and public key p are put as inputs of the permutation.

8 In practice, unpredictability is believed to be more relaxed than pseudo-randomness [DS09b].
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Table 4: Division Properties for Clyde-128 over r rounds, for r ∈ {1, . . . , 8} out of 12. The
input division property is 0x7fffffffffffffffffffffffffffffff.

r Output Division Property
1 0xfffffffffffffffffffefffffffeffff
2 0xf7ffffffffffbfffeefffddfffffffff
3 0x5ffffef7ffbfbfff2fffff65cdfbfffd
4 0x1befaa64f3fbefffc9024f49f5301e15
5 0x04180406d83e8e9f0000000000000000
6 0x410280002c0401010000000000000000
7 0x20001000200020000000000000000000
8 0x00000020000100000000000000000000

differential-linear distinguishers. For Clyde-128 we ran a limited experiment using 230

plaintext pairs for each of the 128 bit input differences, and estimated the bias of any bit in
the output difference. For a single round there are truncated differentials with probability
one. Stated equivalently, not every output bit depends on every input bit after one round.
For 2 rounds, using 230 data, we estimated the maximal bias to be 2−3. For 3 and more
rounds, the available data was not enough to detect statistically significant biases.

Algebraic degree. As for almost any modern block cipher, we do not expect that algebraic
cryptanalysis [CP02], that is breaking the cipher by solving non-linear equations, poses
any threat to Clyde-128. Thus, here we focus on attacks that in particular exploit a limited
algebraic degree. Those attacks include classical integral attacks, cube attacks [DS09a]
and, more recently and fine-grained, attacks based on division property [Tod15].

For the algebraic degree, it is so far out of reach to give meaningful lower bounds on
the degree. However, there are quite advanced, and usually rather precise, upper bounds
known. The best general upper bound for an SPN cipher is given in [BCC11]. According
to those bounds, taking into account that the algebraic degree of our S-box is maximal
(i.e., 3), at least five rounds of Clyde-128 are necessary to reach the maximum algebraic
degree (i.e., degree 127). Thus, we expect that the recommended twelve rounds (six steps)
provide more than sufficient margin to avoid attacks based on low-degree.

Division property. The division property, as introduced by Todo, captures fine grained
algebraic structures in ciphers. There are several variants by now, but all of them can be
seen as an intermediate step between bounds on the degree on the one hand and computing
the entire algebraic normal form (i.e., the exact polynomial representation of the cipher)
on the other hand. Ensuring resistance against all possible variations is out of reach today.
To estimate Clyde-128 resistance against attacks based on division properties, we used
the tool based approach proposed in [XZBL16]. The idea is to build a MILP model for
the division property and solve the resulting optimization problem using an off-the-shelf
solver. For Clyde-128, this resulted in a distinguisher for eight rounds (four steps). In
particular, Table 4 lists one division property for every number of rounds 1 6 r 6 8. For
these, the starting point is always 0x7fffffffffffffffffffffffffffffff, implying that
the plaintext set contains all 2127 plaintexts, where the MSB is not set. The final division
properties from the table denote the balanced bits (all one bits) in the output after r rounds.
Again, we assume that the four additional rounds ensure a sufficient security margin.

Invariant subspace attacks. A successful cryptanalysis method for previous LS-designs
are invariant subspace attacks [LMR15]. Here, an adversary tries to identify a coset of a
linear subspace U + a which gets mapped to another coset U + b by the round function.
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Table 5: Dimensions ofWL for Clyde-128’s round constants and different No. steps/rounds.

No. steps/rounds 3/6 4/8 5/10 6/10
dimWL 96 128 128 128

If such cosets exist, the interleaved key addition can translate the coset U + b back to
U + a, if round keys from U + (a+ b) are used. These round keys, leading to an iterative
application of the invariant subspace property, are thus called weak keys – and the overall
invariant subspace attack is a weak key attack. A generalization of this attack is the
nonlinear invariant or invariant set attack [TLS16]. It generalizes invariant subspaces by
tracing a set which is invariant under the round transformation rather than a subspace.

Later, in [BCLR17], it was shown that both variants (invariant subspace and invariant
set attacks) can be partly thwarted with the right choice of round constants. In particular,
any invariant for the linear layer and the round key addition has the linear structures
WL(ci). By WL(ci), we denote the smallest L-invariant subspace that contains all ci. The
ci are round constant differences for rounds in which the same tweakey is added.

We computed the dimension ofWL for our chosen round constants and different number
of rounds. Table 5 lists the corresponding dimensions. Having dimWL = n (as is the case
from eight rounds / four steps on) implies that any invariant is trivial, namely constant.
With [BCLR17, Proposition 2], we can conclude that no non-trivial invariant exists which
is at the same time invariant for Clyde-128’s S-box layer and its linear layer.

Subspace trails. Subspace trails are an alternative generalization of invariant subspace
attacks [GRR16]. They differ in two points to invariant subspaces. First, the subspace U
may now vary: in the next round it might be translated to a different subspace V . Second,
not only one coset but all U + ai are mapped to cosets V + bi. While the first property
generalizes invariant subspaces, the second restricts the attack. Indeed, [LTW18] showed
that subspace trails are a special case of truncated differentials. They further developed an
algorithm to bound the length of any probability one subspace trail. Using this algorithmic
approach, we bound any subspace trail length for Clyde-128 by three rounds.

3.4 The Shadow-512 permutation
As mentioned in Section 3.2, the confidentiality requirements for the Shadow-512 permuta-
tion are difficult to specify exactly since we do not require an ideal permutation and only
the combination of Clyde-128 and Shadow-512 must lead to pseudo-random outputs. For
performance purposes, we aimed for minimum security requirements. First, we targeted
128-bit security against linear cryptanalysis. This can be analyzed by considering the super
S-box structure of Shadow-512. Two rounds activate 16 S-boxes and four rounds activate
16× 4 S-boxes thanks to the branch number of the diffusion layer. Hence, a probability
bound of 2−128 for the best linear characteristic is reached after four rounds.

We ran the same experiment to estimate truncated differentials for a low number of
steps as for Clyde-128, using 230 plaintext pairs. For one step there are, as expected due
to the super S-box construction, still probability one truncated differentials. For 2 and
more steps, the available data was not enough to detect statistically significant biases.

Next, and similar to Clyde-128 as well, we searched for the longest subspace trails
through Shadow-512. Here, the algorithm bounds the length of any probability-one subspace
trail by five rounds. Finally, we required an algebraic degree 128 which, according to the
upper bound in [BCC11], can be reached after at least five rounds of Shadow-512.
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Integrity requirements are simpler to state: we require that when included in the
TETSponge mode of operation, the Shadow-512 permutation ensures collision resistance for
the 255 bits that are used to generate the tag. For this purpose, a minimum requirement
is to prevent truncated differentials with probability larger than 2−127 for those 255 bits.
A simple heuristic for this purpose is to require that no differential characteristic has
probability better than 2−384, which happens after twelve rounds (six steps).9

3.5 External cryptanalysis
A recent work by Derbez, Huynh, Lallemand, Naya-Plasencia, Perrin and Schrottenloher
analyzes Shadow-512 and its integration in Spook. They demonstrate a distinguisher on
the full Shadow-512 permutation, and a practical forgery attack against fours steps of
Spook in the nonce-misuse setting [DHL+20]. We explain their main results below.

3.5.1 Analysis of Shadow-512

We first define modified round constants W̃ = D−1(W), so that one step is composed of:

• operations that operate independently on each bundle: S, L,W,S, W̃,

• the inter-bundle mixing D defined in Section 2.4,

where the first part can be seen as four 128-bit boxes σ0, σ1, σ2, σ3 (we omit the dependency
on the round number for simplicity). The following analysis is based on this representation,
with the state considered as four 128-bit words (i.e., the bundles of Spook).

Exploiting D. The first result of Derbez et al. is a 5-step distinguisher on Shadow-512
that can be described as a rebound attack [MRST09], using the following probability-1
differential characteristics that exploit the branch number 4 of D:

backwards:
[
∗ ∗ ∗ 0

] σ←
[
∗ ∗ ∗ 0

] D←
[
0 0 0 ∗

] σ←
[
0 0 0 α

] D←
[
α α α 0

]
,

forwards:
[
β β β 0

] D→
[
0 0 0 β

] σ→
[
0 0 0 ∗

] D→
[
∗ ∗ ∗ 0

] σ→
[
∗ ∗ ∗ 0

]
.

Starting from the middle, the inbound phase of the rebound attack builds a pair of values
corresponding to the transition

[
α α α 0

]
→
[
β β β 0

]
over σ. Going though the outbound

phase, this defines a pair with input and output difference in a dimension-128 subspace.
This result can be extended to 6 steps, using sparse values α, β so that the trail can cover
one more S layer with high probability, and doing the inbound phase over SDS.

Exploiting sparse constants. The analysis of Derbez et al. also shows that the sparse
constants in Shadow-512 have an unfortunate interaction with the D operation. More
precisely, there is a high probability that σi(x) = σj(x) with i 6= j. Indeed W only
affects the bth bit of the rows of bundle b, so that after the W operation, the state in σi
and σj only differs in the ith and jth bits. Moreover, W̃ affects bits {0, 1, 2, 3} \ {b} of
bundle b, so that the difference between σi and σj is also only in the ith and jth bits.
With some probability the difference introduced by W is corrected by the difference in
W̃ (with only the S operation in between), and we obtain σi(x) = σj(x). This type of
property exploiting sparse round constants is related to previous works such as internal
differential attacks [Pey10], rotational cryptanalysis [KN10], self-similarity [BDLF10], or
invariant subspaces [LAAZ11, LMR15]. In the case of Shadow-512, the probability of

9 The rationale behind this heuristic is that if there exist a truncated differential characteristic with
a zero difference on the 255 bits of output, it corresponds to the sum of 2257 fully specified differential
characteristics, and at least one them must have probability higher than 2−127/2257 = 2−384.
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having σi(x) = σj(x) depends on the step number and the corresponding constants: as
shown in [DHL+20], the probability is 2−4 at step 3, 2−6 at step 4, but zero for other steps.
When σi(x) = σj(x), various types of symmetry (or subspaces) can propagate through the
round function with high probability, because D also preserves equality of bundles. Using
symmetric states, it is possible to extend this distinguisher to 7 steps of Shadow-512.

3.5.2 Analysis of reduced Spook

The same properties can be used to attack the integrity of a reduced version of Spook
with repeated nonces. In this setting, an attacker knows the value of the outer part of
the sponge state, and he tries to construct two messages leading to a collision. After
querying the oracle on one of the colliding messages, he can generate a forgery for the
second one. Derbez et al. assume a reduced-round version keeping rounds 2 to 5, because
the probability that σ0(x) = σ1(x) is high at rounds 3 and 4. Since the outer part of the
sponge is known, they start with a pair of messages leading to states:[

σ−1
0 (x) σ−1

1 (x) u v
]
,
[
σ−1

0 (y) σ−1
1 (y) u v

]
,

where u, v are unknown values in the inner part of sponge state, and x, y are chosen
arbitrarily. After the σ layer, they obtain:[

x x σ2(u) σ3(v)
]
,
[

y y σ2(u) σ3(v)
]
.

After the D operation, this leads to:[
x′ x′ u′ v′

]
,
[

y′ y′ u′ v′
]
.

With high probability, we then have σ0(x′) = σ1(x′) and σ0(y′) = σ1(y′), so that the
equality between the first two bundles is preserved through round 3, and similarly through
round 4, leading to states:[

x′′ x′′ u′′ v′′
]
,
[

y′′ y′′ u′′ v′′
]
.

Finally, there is a high probability that σ0(x′′)⊕ σ1(x′′) = σ0(y′′)⊕ σ1(y′′), so that there
is no difference in the inner part of the output. According to the analysis of [DHL+20],
the total probability to find the required collision on the targeted rounds is 2−24.8. This
analysis resembles a truncated differential attack, but it also differs significantly. Indeed,
the probability of the characteristic is only high when two bundles have the same value (i.e.,
when two σ boxes share the same input), which does not happen with random pairs of inputs.
In particular, it does not contradict our analysis of differentials and truncated differentials,
because our bound on the probability of differentials assumes random input pairs.

3.5.3 Impact

As mentioned by the authors of [DHL+20], neither the Shadow-512 distinguisher of Sec-
tion 3.5.1 nor the collision attack of Section 3.5.2 threaten the confidentiality or integrity
of the full Spook. However, the collision attack highlights that the heuristic used to select
the number of rounds of Shadow-512 in Section 3.4 is not conservative. We discuss tweaks
in order to improve security margins against this attack in Section 7.

4 Primary candidate and variants
Underlying primitives. We consider two sets of parameters for the Clyde-128 TBC and
Shadow-512 permutation. The recommended parameters are 12 rounds for Clyde-128 and
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12 rounds for Shadow-512. We also provide aggressive parameters, with 12 rounds for
Clyde-128 and 8 rounds for Shadow-512, as a cryptanalysis target (not recommended for
practical use). Our reference implementations and test vectors are based on recommended
parameters. We note that the collision attack of [DHL+20] (cf. Section 3.5.2) nearly breaks
the aggressive parameters (it breaks 4 steps but does not start from the 1st round).

Full algorithm. We denote as Spook[128, 512, su] the AEAD algorithm operating TET-
Sponge in the single user setting with Clyde-128 as TBC and Shadow-512 as permutation,
and as Spook[128, 512,mu] its multi-user version. Based on these notations, we define a:

• Primary candidate as Spook[128, 512, su] with recommended parameters.

• First variant as Spook[128, 512,mu] with recommended parameters.

We recall that the only difference between the single-user and multi-user versions of Spook
is that the public tweak p is stuck at zero in the first case (i.e., the key is limited to 128
secret bits), and picked up at random in the second one (i.e., the key is made of 128 secret
bits and 126 public bits). We additionally define two smaller versions of Spook with a
384-bit state. They are obtained by turning the 512-bit permutation into a 384-bit one.
We do so by defining Shadow-384 as a 3LS-design (rather than a 4LS-design) where the
diffusion layer (a, b, c) = D(x, y, z) is specified as:

• a = x⊕ y ⊕ z, • b = x⊕ z, • c = x⊕ y.

The rest of the permutation and the other elements of the mode are adapted so that
r = 128, with the same number of rounds for the parameters, leading to our:

• Second variant as Spook[128, 384, su] with recommended parameters.

• Third variant as Spook[128, 384,mu] with recommended parameters.

5 Rationale: design trade-offs, advantages & limitations
Spook is an AEAD algorithm with state-of-the-art guarantees in the black box setting.
Namely, it ensures beyond-birthday security with respect to the block size of its underlying
TBC, can be extended to multi-user security with a public tweak, and provides nonce misuse-
resilience in the sense of Ashur et al [ADL17]. Thanks to its one-pass structure, Spook
should allow efficient implementations on a wide range of platforms. Its design is in partic-
ular well-suited to 32-bit software implementations (thanks to an intensive exploitation
of 32-bit word-level operations), and to dedicated hardware and FPGA implementations
(thanks to the low gate complexity and limited depth of its different components).

Spook provides excellent opportunities to mitigate physical attacks efficiently thanks to
its leakage-resistant features. In particular, the general rationale behind its design enables
leveled implementations, where the Clyde-128 TBC is well protected against side-channel
attacks and the Shadow-512 (or Shadow-384) permutation is implemented with cheaper
protections (or even no protections at all). It is in the specific contexts where physical
attacks are an important concern that Spook is expected to exhibit significant performance
(e.g., energy) gains compared to modes without leakage-resistant (or resilient) features.

Concretely, protecting the TBC can be achieved thanks to the masking countermeasure,
both in hardware [CGLS20] and in software [GR17]. For this purpose, Clyde-128 is designed
both with low AND complexity (as previous LS-designs) and low AND depth (which
is important to limit the latency of so-called glitch-resistant implementations [NRS11,
FGP+18]). As for the permutation, low-latency / low-energy implementations in the sense
of [KDH+12] are natural candidates in hardware, while some minimum countermeasures
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to prevent SPA (e.g., low-order masking, or time randomization [VMKS12]) should be
sufficient in software. For this purpose, the Shadow-512 (or Shadow-384) permutation is
designed with low-latency components. Leveled implementations of Spook can also benefit
from pre-computing the (expensive) generation of fresh seeds if needed.

The main price to pay for the leakage-resistant features of Spook is that it suffers from
some overheads in case of short messages. This seems unavoidable in any mode leveraging
a re-keying process. However, and as evaluated in [BGP+20, BBC+20], these overheads
are amortized as soon as the data to process is a few blocks long, and the gains of leveled
implementations can reach factors 10 to 100 (e.g., in energy) if a high physical security
level is required by an application. A secondary drawback is the need of two primitives (a
TBC and a permutation), which implies a larger cost (i.e., area) in hardware. However,
this drawback vanishes for the intended performance metric (i.e., the energy per bit) and
case studies, since (i) the Clyde TBC is only used for initialization and finalization and
can be switched off for the rest of the computations, and (ii) leveled implementations
require implementations with different physical security levels anyway. Furthermore, in
case uniformly (un)protected implementations are considered, the use of the same S-box
and L-box in Clyde-128 and Shadow-512 (or Shadow-384) should allow resource sharing.
We show in the next section that even in this disadvantageous context, Spook reaches
excellent performance levels and the overheads due to the two primitives are small.

Eventually, we list a couple of additional interesting features of Spook.
First, the TETSponge mode is compatible with solutions for the encryption of long

messages segmented into several smaller packets, as for example proposed by Bertoni et
al. [BDPA11] and formalized by Hoang et al. [HRRV15]. Such a “session feature” can
be used as a partial tagging mechanism which allows the decryption of long messages
when only a limited memory is available (i.e., smaller than the size of the message),
and saves the execution of one TBC per segment (i.e., the highly protected part and
therefore more expensive part in a leveled implementation of TETSponge). These modes
are not directly compatible with the NIST API. We discuss them (and their adaptation to
Spook) in a separate publication [CGP+19]. Second, since leveraging a re-keying process,
the Spook algorithm inherently provides good resistance against some Differential Fault
Attacks, as discussed in [MSGR10, DEM+17]). Finally, an inverse-free variant of Spook
can be obtained by performing the tag verification in the direct sense. It can only satisfy
CIML1 in the unbounded leakage model, yet can provide good concrete security against
bounded leakages if the tag verification is sufficiently protected (e.g., masked). It is also
the natural way to implement Spook if side-channel attacks are not a concern. When
such an inverse-free variant is considered, the tag of Spook can be truncated, leading to a
standard tradeoff between the mode’s integrity guarantees and performances.

More discussions about the high-level design choices and security claims of the Spook
authenticated encryption scheme, together with news, updated (unprotected and masked)
implementations, mathematical and side-channel cryptanalysis challenges and other addi-
tional resources, can be found on the algorithm website https://www.spook.dev/.

6 Unprotected implementation results
In this section, we provide first results of optimized (unprotected) implementations of Spook.
Our main objective is to demonstrate that even in this disadvantageous context (which
does not take advantage of leveled implementations), Spook has excellent performance
figures on a wide range of platforms. In particular, the overheads (in hardware area and
embedded software code size) due to the use of two different primitives are shown to be
limited thanks to the possibility to share resources (i.e., S-boxes and L-boxes).

https://www.spook.dev/
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6.1 Software implementations
The structure of the (m)LS-design primitives with 32-bit row length makes them very easy
to implement on 32-bit platforms. The naive implementation provided in the reference
implementation of Spook (see https://www.spook.dev/) is already quite efficient, and
the optimized implementations keep the same structure. This implementation is based on
storing each row of the (m)LS-designs as a machine word. The L-box is then implemented
using rotations and XORs, the S-box in a bitslice fashion (4 ANDs and 4 XORs for a full
LS state), and the D-box takes another 24 XORs for the full mLS state.

We focus on two kinds of platforms: high-end (x86_64 with SIMD instructions) and
embedded targets (ARM Cortex-M/RISC-V). For portability, we use as much as possible
standard C code (with a few common compiler extensions). Common optimizations for
both kinds of targets were ensuring properly aligned data layout. We also ensured that
relevant function calls and loop unrolling could be inlined by the compiler.

6.1.1 High-end platforms

The Clyde-128 implementation for high-end platforms comes in two flavors: 32-bit (reference
implementation with generic optimizations applied) and 64-bit, where a pair of rows is
stored in a 64-bit word (interleaving bits of both rows). This implementation can thus
perform the L-box using rotations and XORs on a single 64-bit word. The S-box is
performed on four 64-bit words, where one out of two bits in each word is not used. This
implementation requires to switch representation to and from interleaved-rows registers,
which is performed by the _pdep_u64 and _pext_u64 instructions.10 Overall, the 64-bit
implementation of Clyde-128 gains about 4 % performance over the 32-bit one.

The Shadow-512 primitive is more interesting: the mLS design gives more opportunities
to exploit the parallelism of SIMD instructions. First, we explored the use of 128-bit words,
used as 4 times 32 bits, where each 32-bit sub-word is associated to one bundle. The
full Shadow-512 state is thus four 128-bit words, one for each row. S-boxes and L-boxes
are then easily implemented (using bitwise XORs and ANDs, and 32-bit rotations). The
D-box is more challenging to implement, since it mixes sub-words from the same 128-bit
word. We do it by using the shuffle primitive, requiring 12 shuffles and 8 XORs for the full
512-bit D-box. The implementation is written using only C code without platform-specific
instrinsics, thanks to the vector compiler extension supported by GCC and Clang.

We explored implementations of Shadow-512 with larger word sizes. We considered
the use of 256-bit AVX2 and 512-bit AVX512 instructions, but this does not translate
into significant practical gains. We report performance numbers in Table 6. We observe
that performance is significantly better for the Skylake-AVX512 target. This is due to the
presence of rotate instructions for 128 bits and 256 bits in its instruction set.

6.1.2 Embedded Software (ARM Cortex/ RISC-V)

The code of our embedded software implementations is written in C with minor changes
compared to the reference implementation, chosen to optimize the assembly code generated
by the compiler. The round constants are not stored in memory but derived from an LFSR
to reduce the code size. The three tweakeys are pre-computed: at each round, the correct
one is loaded according to the round index modulo three. In order to avoid (sometimes
costly) arithmetic operations, the later is performed by hard-coding a value 0x924 at the
beginning of each encryption, which is then right-shifted by two at the end of each round
so that its lower bits always correspond to the round index modulo 3.

The performances obtained with optimization flags set for reduced code size and
maximum speed are given in Tables 7 and 8. The total code size is reported with the

10 From the BMI2 instruction set, available first on the Haswell Intel micro-architecture.

https://www.spook.dev/
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Table 6: High-end software performance results. Number of cycles compiled for various
micro-architectures, and throughput (cycles per byte) for a message of 2048 bytes.

x86-64 (SSE2) Haswell (AVX2) Skylake-AVX512
Clyde-128 (32-bit) 317 283 283
Clyde-128 (64-bit) 271 271
Shadow-512 (32-bit) 904 457 342
Shadow-512 (128-bit) 409 397 304
Shadow-512 (256-bit) 432 312
Shadow-512 (512-bit) 454

Spook (C32bit-S128bit) 13.3 (per byte) 13.3 (per byte) 10.1 (per byte)

number of cycles to evaluate each primitives. The number of cycles per byte is given
for a complete run of Spook on a 2048-byte message. Overall, the Cortex-M3 has better
performances than the other MCU’s. This comes from the barrel shifter that allows
performing rotations and XORs in a single cycle, while the others MCU’s need three
cycles for it. For the RISC-V implementation, we use the RI5CY core.11 It leads to faster
results than the Cortex-M0 because of its 27 data registers (while the Cortex has 12 data
registers). It can therefore hold the whole Shadow-512 in the registers, while the Cortex
spends time (and code size) storing and loading that state into memory.

Table 7: Size-optimized performances on embedded platforms (-Os).

Size Clyde-128 Shadow-512 Spook
[Bytes] [Cycles] [Cycles] [Cycles/byte]

Cortex-M0 1936 3274 8626 299
Cortex-M3 1878 1764 5496 187
RI5CY 2138 1853 4731 161

Table 8: Speed-optimized performances on embedded platforms (-O3).

Size Clyde-128 Shadow-512 Spook
[Bytes] [Cycles] [Cycles] [Cycles/byte]

Cortex-M0 4628 2450 6288 205
Cortex-M3 3822 802 2340 77
RI5CY 4618 1259 4062 132

6.2 Hardware implementations
We now present an optimized hardware architecture for the unprotected implementation
of Spook. The tag verification is therefore based on the inverse-free variant.

Our main optimization goal is to minimize the amount of logic needed in order to
implement Spook, mixing Shadow-512 and Clyde-128 while keeping high performance levels.
For this purpose, we perform Shadow-512’s Round A and Round B each in multiple clock
cycles that operate over a part of the state. We observe that the Round A logic can be
re-used to implement the round function of Clyde-128. Therefore, the same logic core can
be used for both primitives and the practical impact of Clyde-128 on the overall cost boils
down to the one of the logic performing the tweakey update and its addition.

11 https://github.com/pulp-platform/riscv.

https://github.com/pulp-platform/riscv
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Our architecture is depicted in Figure 2. Each bus is 128-bit long unless indicated
otherwise. The IOs (in red) include the nonce, the key, the tag, the bytes to digest (denoted
as Din) and the digested bytes (denoted as Dout). The Din bytes can be associated data,
plaintext or ciphertext and come from an external block that pads them with 10* when
needed. It follows that Dout contains bytes either from the ciphertext or the plaintext.
The blocks SLW (i.e., S-box then L-box then W addition) and SDW (i.e., S-box then D-box
then W addition) contain the combinatorial logic to perform a round of Clyde-128 and
Shadow-512’s Round B, respectively. The pad ciphertext module is only used during a
decryption process to pad the input ciphertext before the latter is used during the following
execution of Shadow-512. The values α0 and α1 are for the domain separation bits.

To process a call of Clyde-128, the initial plaintext and tweak are respectively stored in
the registers R0 and R1. The control signal mode_RB is unset (i.e., equals 0) in contrast
with mode_clyde that is set in such a way that the state of the TBC cycles through the R0
register and the SLW logic (and the tweakey addition) at the rate of one round per clock
cycle. Therefore, the full Clyde computation takes 12 cycles. The tweak flows through
registers R1, R2 and through the φ logic, producing a valid updated tweak every two clock
cycles. For Shadow-512, the four 128-bit bundles b0, . . . , b3 are stored in the registers R0
to R3. Those registers act as circular shift registers with two shifting modes. For Round
A, the data cycles from R3 to R0, then through the SLW unit back to R3, computing a full
round in four cycles (all mux controls are unset). For Round B, data is cycling inside the
same Ri register: the signal mode_RB is set, forwarding the data to the SDW unit (that
updates a part of it input and shifts the other part) for 32/Nu cycles.

When starting the Spook operation, a clock cycle is required in order to load the
values N and 0* needed to initiate the first call of Clyde-128 that computes the fresh seed
B. Next, for the first call of Shadow-512, the initial state (i.e., 0*||N ||0*||B) is loaded
sequentially per bundle at the end of the seed computation (excepted for B), using again
the control signals feed0 and feedN. Shadow is then executed, and the digest unit is
used a the beginning of each execution when AD/P/C needs to be fed. Finally, the tag
computation is initiated by waiting a clock cycle (in Round A mode shifting), which is
required in order to have the first two bundles used as plaintext and tweak, respectively.
Additionally, the signal t is set in order to ensure that the MSB of the tweak is high.

6.2.1 FPGAs

We synthetized the previous architecture on an Artix-7 FPGA (xc7a100tcsg324-3) with
Xilinx ISE14.7 toolset. The interface used is a variant of the CAESAR API: the only
difference is that the core has a single input channel of 32 bit instead of two.

The main parameter of our investigations is the number of units implemented, next
denoted as Nu. Considering the state as four 128-bit bundles, a unit is computing the
S-box on the columns with the same index in each bundle (i.e., 4 parallel S-boxes) and
applies a D-box over 16 bits to the outcome. By using multiple instance of such units in
parallel (Nu can vary from 1 to 32) and combining them with a shift register strategy,
computing Round B lasts more or less clock cycles for a variable logic cost.

Implementation results for different values of Nu and optimization goals are shown in
Table 9. A run of Shadow-512 is performed in 6 (4 + 32/Nu) cycles. The table includes
standard post place-and-route metrics, namely the amount of slices, of registers and of
look-up tables required, the clock frequency, the latency, the throughput (for long messages,
denoted as TP) and the throughput over area ratio (denoted as TPA). Note that the TPA
metric for Nu = 8 (which is a natural number of units to balance the cost of Round A and
Round B) improves the preliminary results reported in [Beh19] by a factor 10, and does it
by improving both the area and throughput, reflecting better architectural choices.
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Figure 2: Architecture of Spook[128,512,su] (unprotected, inverse-free variant).

Table 9: Artix-7 implementations results (post place-and-route).

Nu Opt. Slices Regs LUTs Freq. Lat. TP TPA
Strat. [MHz] [Cycles] [Mbps] [Mbps/LUT]

1 Area 519 1452 1941 138 216 163 0.084
1 Speed 546 1452 2008 171 216 202 0.1
8 Area 549 1449 2039 140 48 746 0.366
8 Speed 568 1449 2112 184 48 981 0.464
32 Area 642 1447 2383 137 30 1169 0.490
32 Speed 660 1447 2441 188 30 1604 0.657

The practical impact of Clyde-128 is assessed by running a synthesis using the same
optimisation parameters with the logic exclusively related to Clyde-128 removed. As shown
in Table 10, it appears that the implementation results obtained with and without Clyde-128
for our architecture with Nu = 8 only differ by 261 LUTs for both optimization strategies.
As for cycles overheads, Clyde-128 is implemented in 12 cycles in our architecture, so we
need (24+1) cycles corresponding to the initial/final Clyde and one cycle for the interface.
This could be further reduced by using exploiting more parallelism if needed. Overall,
these results confirm Spook’s excellent opportunities of resource sharing.

6.2.2 ASICs

In this subsection, we finally present a first optimized ASIC implementation of unprotected
Spook in a 65nm technology, adopting the Nu = 8 level of parallelization. The numbers
we provide are based on a classic design flow, performed with the TSCM-N65LP (low-
power) design kit, adopting Cadence Genus 16.12-s027 for the synthesis and Cadence
Innovus 16.10 for the place-and-route steps. We have used the clock gating option for
the synthesis in order to reduce the dynamic power consumption when the datapath of
the Spook processor is in idle. The design reached a density of 93%. In Table 11, the
overall cost of the ASIC implementation is reported. In Table 12, the impact of the clock
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Table 10: Practical cost of Clyde-128 on top of Shadow-512 (Nu = 8).

Opt. Slices w/o ∆ Slices Regs w/o ∆ Regs LUTs w/o ∆ LUTs
Strat. Clyde-128 Clyde-128 Clyde-128
Area 524 25 (4.7%) 1447 2 (≈ 0%) 1862 177 (9.5%)
Speed 518 50 (9.6%) 1447 2 (≈ 0%) 1948 164 (8.4%)

Table 11: ASIC implementation results (post place-and-route) with Nu = 8.

Instance Area Max. Freq Power Throughput Energy
[kGE] [MHz] [mW] [Mbps] [pJ/bit]

Spook[128,512,su] 17.5 416 8.27 2218.6 3.72

frequency on the efficiency and power consumption of our architecture is detailed. It can
be seen from Table 12 that our proposed implementation is remarkably energy-efficient
in the 10MHz to 100MHz range, while the energy penalty for using the maximum clock
frequency is very limited. Note that this range of frequencies typically covers the ones
used in most IoT applications and RFID devices. At lower frequency, the static power
consumption is dominant, and the energy per bit increases significanlty as well (although
further optimizations could be investigated for this specific context).

7 Tweak proposals
While the analysis of [DHL+20] does not target the full Spook AEAD, it exploits two design
choices in Shadow that may be improved with simple changes: (i) the round constants
are sparse and affect only one S-Box per bundle, and (ii) the branch number of D is only
4. In Section 7.1, we discuss tweaks that strengthen Shadow. Our rationale is that they
should increase the security more efficiently than a direct increase of the number of rounds.
Next, in Section 7.2, we discuss additional tweaks to improve performances, based on the
finer-grain understanding of software and hardware implementations that the previous
section enables. We conclude this section by proposing Spook v2, a variation of Spook
improving its security margins at the cost of minimum performance overheads.

7.1 Improving security margins
Based on the analysis of [DHL+20], two natural approaches to improve the security margins
of Spook are to use denser round constants in Shadow and to improve the D transform.
Changing the round constants is a more ad hoc change that primarily affects the collision
attack while improving the D transform is a more general improvement that also mitigates
the distinguisher. We therefore propose to replace the binary D by an efficient MDS matrix
proposed in [DL18]. Precisely, we propose to use the M8,3

4,6 matrix for Shadow-512 and
M5,1′

3,4 for Shadow-384. In both cases, we work in the 32-bit ring of polynomials modulo
x32 + x8 + 1 with the constant factor x. The coefficients of the polynomials are the bits
of an LS row, the low-degree coefficient corresponding to the column i = 0. This change
weakens the cryptanalysis of [DHL+20] for two reasons: equality of two bundles is no
longer preserved through D and diffusion is improved. This limits the symmetry properties
in Shadow and increases the bound on the number of active S-Boxes for differential &
linear characteristics: we now have 80 active S-Boxes (rather than 64) every four rounds for
Shadow-512, and 64 ones (rather than 48) every four rounds for Shadow-384. We evaluated
that the cost of this change is minimal in hardware and implies roughly 15% of cycles
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Table 12: Impact of clock frequency on the ASIC results with Nu = 8.

Frequency [MHz] Power [mW] Throughput [Mbps] Energy [pJ/bit]
416 8.27 2218.6 3.72
400 8.04 2133.3 3.76
333 6.66 1776 3.75
100 1.96 533.3 3.675
10 0.166 53.3 3.675
0.1 0.004 0.53 7.5

overheads in embedded software implementations (e.g., Cortex-M3, RI5CY). Note that we
still do not claim that the Shadow permutation is hermetic. In particular, we expect that
rebound distinguishers based on the diffusion properties of L-box could reach up to 10 or
12 rounds, but this type of inside-out property in not applicable to the mode.12

7.2 Improving efficiency
The original constant addition of Shadow adds a single-bit constant to the four 32-bit words
of each bundle. This limits the efficiency for software implementations, as each touched
word requires a fixed amount of operations independently of the actual number of bits of
the constant. By grouping constant additions to fewer state words, the execution time of
Spook on microprocessors can decrease by more than 10 % while at the same time enabling
denser constants. New constants for Shadow taking advantage of this observation are as
follows: for the round A, a constant word is added to the second row of each bundle (so that
we need four 32-bit constants for Shadow-512 and three ones are for Shadow-384); for the
round B, a constant word is added to all the rows of the first bundle. The 32-bit constants
are obtained from the state of a 32-bit LFSR. Using the same representation as for the MDS
D-box, the shifting of the LFSR is the multiplication by x modulo x32 + x7 + x6 + x2 + 1.
The first round constant is obtained by shifting this LFSR 1024 times.

Besides, we also change the input of the first Shadow-512 call to B||P ||0||N ||0∗, which
improves the efficiency (both in cycles and area) of the hardware implementation.

7.3 Spook v2 and performance overheads
The Spook v2 proposal combines the two improvements presented above for Shadow (Clyde-
128 is left unchanged). It reaches similar performances as Spook v1: the cost increase due
to the MDS D-box is compensated by the cost reduction due to the change of constants.
For completeness, we refer to Appendix G for updated figures and details about the Spook
v2 design, and to Appendix H for software and hardware implementation figures.

8 Relaxing the leak-free assumption
Leveled implementations aim to exploit the possibility that different components of an
encryption process may need different levels of protection against physical attacks that
come with different costs. Based on this observation, the security analysis of Spook in the
presence of leakage, as offered in [GPPS19b], is based on the assumption that the TBC
is strongly protected against side-channel analysis, while the permutation is only weakly
protected. This previous work, following others [PSV15, BKP+18, BPPS17, BGP+20],

12 Rebound distinguishers based on properties of L are less powerful than distinguishers based on
properties of D, because input/output differences do not match the bundle limits, and the distinguisher
would typically start from a B round in order to reach the maximum number of rounds.
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modeled this strongly protected TBC as leak-free. Yet, the use of such an idealized
assumption is not desirable from a practical standpoint. We next show that it is sufficient
to assume that the TBC provides strong unpredictability in the presence of leakage, which
is a weaker and empirically falsifiable assumption. For this purpose, we adapt a recent
result from Berti et al. on leakage-resilient MACs to TETSponge and Spook [BGP+19].

8.1 Strong Unpredictability with Leakage
We denote by L = (LEval, LInv) the leakage function pair associated to an implementation of
the TBC, E : K × T × X 7−→ Z, where LEval(k, tw, x) (resp., LInv(k, tw, z)) is the leakage
resulting from the computation of EK(T,X) (resp., E−1

K (T,Z)). We also allow the adversary
A to profile the leaking device, which we write as AL, following [PSV15]: when querying
this oracle, A must provide all three inputs of E and E−1, including the key. Note that
this is necessary since the adversary does not know the leakage function and can only
access to the leakage function through the device, in an oracle manner [SPY13]. Despite
the leakage, it should be hard to guess a fresh TBC triple (X,T, Z). For this purpose, we
extend the definition of Berti et al. [BGP+19] in the multi-user setting.

Definition 1 (muSUL2). Given the implementation of a tweakable block cipher E :
K × T × X 7−→ Z with leakage function pair L = (LEval, LInv), the multi-user strong
unpredictability advantage with leakage of an adversary A against E with u users is:

AdvmuSUL2
A,E,L,u := Pr

[
muSUL2A,E,L,u ⇒ 1

]
,

where the security game muSUL2 is defined in Table 13.

Table 13: Strong unpredictability with leakage in evaluation and inversion experiment.

muSUL2A,E,L,u experiment.
Initialization: Oracle LEval(i, T,X):
K1, . . . ,Ku

$← K Z = EKi(T,X), `ev = LEval(Ki, T,X)
L ← ∅ L ← L ∪ {(i,X, T, Z)}

Return (Z, `ev)
Finalization:

(i,X, T, Z)← ALEval,LInv,L Oracle LInv(i, T, Z):
If (i,X, T, Z) ∈ L, Return 0 X = E−1

Ki
(T,Z), `i = LInv(Ki, T, Z)

If Z == EKi
(T,X), Return 1 L ← L ∪ {(i,X, T, Z)}

Return 0 Return (X, `i)

We say that an implementation of E with leakage L = (LEval, LInv) is a (u, qt, qv, qL, t, ε)-
strongly unpredictable tweakable block cipher if, for all adversaries A making at most qt
tag queries, qv verification queries, qL offline profiling queries on the implementation, and
running in time less than t, the above advantage is upper bounded by ε.

8.2 New CIML2 Analysis of TETSponge/Spook
First, we recall the definition of the CIML2 advantage in the muti-user setting.

Definition 2 (muCIML2). Given the implementation of an authenticated encryption
AE = (Enc,Dec) with leakage function pair L = (LEnc, LDec), the multi-user ciphertext
integrity advantage with misuse-resistance and leakage of an adversary A against AE with
u users is:

AdvmuCIML2
A,AE,L,u := Pr

[
muCIML2A,E,L,u ⇒ 1

]
,

where the security game muCIML2 is defined in Table 14.
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Table 14: Ciphertext integrity with nonce misuse and leakage in enc. & dec. experiment.

muCIML2A,AE,L,u experiment.
Initialization: Oracle LEnc(i,N,A,M):
K1, . . . ,Ku

$← K, L ← ∅ C = EncKi
(N,A,M), `e = LEnc(Ki, N,A,M)

L ← L ∪ {(i,N,A,C)}
Finalization: Return (C, `e)

(i,N,A,C)← ALEnc,LDec,L

If (i,N,A,C) ∈ L, Return 0 Oracle LDec(i,N,A,C):
If ⊥ 6= DecKi

(N,A,C), Return 1 M = DecKi
(N,A,C), `d = LDec(Ki, N,A,C)

Return 0 Return (M, `d)

Following Spook in Figure 1, we call S0 the state of the first output of the permutation
π, both in encryption and decryption. Then, iteratively, we get a chain of states S =
(S0, . . . , Sλ, . . . , Sλ+`) that are the consecutive outputs of π for a λ-block associated data
A and `-block message M (resp., c, for ciphertext C = c‖Z with tag Z) in encryption
(resp., decryption) as also detailed in the full specification of Appendix A. Then, the
2n − 1 most significant bits of Sλ+`, denoted Sλ+`[: 2n − 1], give U‖V , with |U | = n.
To simplify the notation, we write this process by H(S0, A,M) = U‖V in encryption
and by H−1(S0, A, c) = U‖V in decryption. We will prove muCIML2 security in a model
where all the intermediate values computed by E and π are leaked in full – which we call
the unbounded leakage model. This is to ensure integrity in a very robust and simple
model. This model is also quite conservative in terms of security, as it considers that the
information leaked comes at no cost for A, while it is expected to require a non negligible
amount of work in reality (for measurement and information extraction). The unbounded
leakage function pair L∗ = (L∗Enc, L∗Dec) of Spook is defined as:

L∗
Enc(Ki‖Pi, N, A, M): return B = ETi

Ki
(N) and LEval(Ki, Ti, N), where Ti := Pi‖0, as

well as S to get H(S0, A,M) = U‖V and finally LEval(Ki, V ‖1, U);

L∗
Dec(Ki‖Pi, N, A, C): return B = ETi

Ki
(N) and LEval(Ki, Ti, N), where Ti := Pi‖0, as

well as S to get H−1(S0, A, c) = U‖V , U∗ = E−1
Ki

(V ‖1, Z) and LInv(Ki, V ‖1, Z).

Since we model π as a random oracle, we explicitly include the chain of state S in the
leakage to capture the fact that π is a public function. Given B, we can in fact compute
S from the known input of the query. We add S in order to avoid any confusion in our
argument and to highlight that an adversary does not have to query π “offline” to get
S. We never use the programmability of the random oracle as we modeled π as an ideal
permutation where we only keep track of all the records of the forward (π) and backward
(π−1) evaluations. We recall that the ciphertext C = c‖Z above is valid if U = U∗.

Theorem 1. Let π : {0, 1}r+c 7−→ {0, 1}r+c be a random permutation with r = c =
2n, modeled as a random oracle, and E : {0, 1}n × {0, 1}n × {0, 1}n 7−→ {0, 1}n be a
(u, qt, qv, qL, t, ε)-strongly unpredictable tweakable block cipher with leakage L = (LEval, LInv).
Then, in the unbounded model L∗ = (L∗Enc, L∗Dec) defined above, for any adversary A making
at most qe leaking encryption queries, qd leaking decryption queries, qπ offline forward or
backward queries to π, qL profiling queries to L∗ on chosen keys, and running in time less
than t, we have:

AdvmuCIML2
A,Spook,L∗,u ≤

Q2

22n−3 + qπ
2n + (qd + 1) · ε+ qdQ

2

2n−1 · ε+ qdQ

22n−1 ,

assuming that Q = σ+ qe + qd + qπ + 1, where σ is the total number of blocks (of r bits) in
all the queried plaintexts and ciphertexts including associated data (as well as those of the
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potential forgery ciphertext), that tπ(Q−q)+tπ−1q+(2qe+qd+qL−q′)tE+(qd+q′)tE−1 +t′ ≤ t
for any 0 ≤ q ≤ qπ and q′ ≤ qL, where t′ is the time to manage the chain of states from
the π-history, and where we assume that all the π evaluations involved in the qL queries
are already among the qπ queries, and as long as 4 ≤ Q ≤ 2n−4 and 4qd ≤ Q.

The leading term of this security bound is qdQ
2

2n−1ε−1 . If we assume the block size to be
n = 128, the unpredictability bound to be ε = 2−96 and the number of online leaking
decryption queries to be as high as 2−64, we can still handle Q, which contains the offline
computation factors, growing up to ≈ 280. The bound, while remaining beyond birthday,
is weaker than the one obtained when the TBC is modeled as leak-free (i.e., 2114, as per
Table 3). This is because we now enable the TBC to leak information. However, we note
that we did not find any attack strategy matching our bounds, and it is likely that a more
detailed analysis could lead to further improvements (see the discussion in [BGP+19]).
We offer a proof sketch below, and defer the full proof to Appendix I.

Idea of the proof. Without loss of generality, we assume that all the inputs of any
query can be parsed correctly and that all the fixed-length nonces are already padded
with 0’s, then |N | = n in the following. Let (i,N,A,C) be a forgery ciphertext with
C = c‖Z. Let M = DecKi‖Pi

(N,A,C). From B = ETi

Ki
(N), we write S0 = π(Ti‖N‖0n‖B)

and H−1(S0, A, c) = U‖V (which is also H(S0, A,M)). If no quadruple of the form
(i, ?, V ‖1, Z) appears during the computation of all the evaluations and inversions of E,
(i, U, V ‖1, Z) is a valid fresh quadruple for E which breaks the unpredictability of the TBC.
However, if it is not the case, a quadruple (i, ?, V ‖1, Z) appears either in the evaluation of E
during an LEnc query or only in the inversion of E in an LDec query. (Note: since the last bit
of the tweak is 1 we do not need to consider the first evaluation of E in those queries, where
the last bit of the tweak is always 0). In the former case, as the answer to an LEnc query is
necessarily valid, the quadruple (i, ?, V ‖1, Z) must actually be (i,E−1

Ki
(V ‖1, Z), V ‖1, Z), i.e.

(i, U, V ‖1, Z). Of course, if the adversary has made an LEnc query on (i,N,A,M), it cannot
win. If the adversary is successful, it means that it managed to request an LEnc query
on some (i,N ′, A′,M ′) such that (N,A,M) 6= (N ′, A′,M ′). Since ETi

Ki
is a permutation

it can only occur if H(S0, A,M) = H(S′0, A′,M ′) while (S0, A,M) 6= (S′0, A′,M ′), which
implies a π-collision either on the last c− 2 = 2n− 2 bits of some states that are not the
last in the chain or on the first 2n− 1 bits of the final state of the chain. We can cover this
case by removing once and for all any π collisions of both kinds. This results in the first
term of the bound. We can thus focus on the latter case where a quadruple (i, ?, V ‖1, Z)
only appears when answering an LDec query, i.e. in an inversion of E. Of course, if the
first time (V ‖1, Z) appears when answering an LDec query for the user i the ciphertext is
valid, we can reduce it to the unpredictability of E again. After all, the adversary might
have used its forgery in an LDec query before deciding to end the muCIML2 experiment.
So, we already have the term (qd + 1)ε of the bound. Now, we are left with the case where
the first time (V ‖1, Z) appears in an LDec query for user i, the processed ciphertext is
invalid. Moreover, we recall that (V ‖1, Z) never appears in an LEnc query for user i.

In the forgery ciphertext, we call Rλ+` the last input of π in decryption. Therefore,
π(Rλ+`) = Sλ+` and then π(Rλ+`)[: 2n − 1] = U‖V . We now argue that the first time
the input-output couple (Rλ+`, Sλ+`) is defined for π it was in a forward query π(Rλ+`).
Otherwise, either the full chain of states has been computed in backward or there is a
collision somewhere in the middle. In the former case, it easy to see that being able to cast
the chain (S0, . . . , Sλ, . . . , Sλ+`) into a valid ciphertert requires that π−1(S0) = Ti‖?‖0n‖?,
which at least implies computing a partial preimage of 0n at the third n-bit position. In the
latter case, we must have π(Sα−1)[r + 2 :] = π−1(Sα+1)[r + 2 :] in their first computation,
i.e. a collision on the last c − 2 bits of their outputs. But, we already dealt with such
collisions as the total of the qπ queries included in Q counts for both forward and backward
queries to π. So, up to the probability of qπ/2n, only the forward evaluation matters.
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We split the remaining winning conditions into: (1) Rλ+` appears as an input of π
before the first apparition of (V ‖1, Z) in a leaking decryption query for user i; (2) Rλ+`
appears as an input of π strictly after the first apparition of (V ‖1, Z) in a leaking decryption
query for user i; no matter whether Z appears first in an LEnc answer or in an LDec query
and no matter where π(Rλ+`) is computed for the first time. For instance, π(Rλ+`) can
appear in the chain of states in the computation of the answer to some LEnc query and
the adversary is trying to compute a fresh and valid ciphertext from a prefix of that chain
or in an offline π-query as an attempt to extend a chain of states. The first case means
the adversary chooses Z depending on the view of the output value U‖V and hence it
relates to the unpredictability of E. In the second case, the target U∗‖V is implicitly fixed
in the first leaking decryption query where (V ‖1, Z) is going to appear while the output of
π(Rλ+`) remains uniformly random and independent of the view at that time.

We finally go on with the first leaking decryption query for user i where (V ‖1, Z)
appears (and we already know that it is invalid). By convention, we consider the forgery
as the (qd + 1)-th LDec query, leading to the following two cases:

In case 1, π(Rλ+`)[: 2n− 1] = U‖V appears before the first time a leaking decryption
query for user i involves (V ‖1, Z). Since the corresponding ciphertext is invalid we have
to emulate E by calling the LEval and LInv oracles... except if we already won against the
unpredictability. If we could not win at that time and if we had to simulate the LDec
query properly, we would not win with the final forgery ciphertext later as the quadruple
(i, U∗, V ‖1, Z) would have been “consumed” in the emulation and would no longer be
fresh afterwards. Fortunately, in this leaking decryption query we can start to emulate the
first call to E by an LEval query to get the leaking TBC output that allows computing
the chain of states of the given ciphertext until U ′‖V with, necessarily, U ′ 6= U . At that
point, instead of emulating a leaking inversion of E with (i, V ‖1, Z), we can guess which
output state already defined from a forward query to π among those with the 2n− 1 first
bits of the form ?‖V is actually the right U‖V . And we know that U‖V is already in the
π-history. Therefore, for each such output state we have to make a reduction to muSUL2.
Fortunately again, as the number of such output states implies as many multi-collisions on
the V values this number remains sufficiently small. Taking into account all the possible
output states with such a property and all the leaking decryption queries (as we cannot be
sure which one will correspond to our U‖V of the forgery ciphertext before the end of the
muCIML2 experiment) we get the term ε · qdq2/2n−1 of the security bound.

In case 2, the adversary outputs a forgery ciphertext while (V ‖1, Z) appears in a
leaking decryption query before the first computation of π(Rλ+`). Here, we simply pick
the key of the TBC to simulate the muCIML2 experiment. If (V ‖1, Z) already appears
when answering an LDec query for user i the TBC quadruple (i, U∗, V ‖1, Z) is already
fixed in the answer while the current ciphertext is invalid. Therefore π(Rλ+`) which is still
uniformly random and independent of the view at that time will have to match the target
U∗‖V . This match thus happens with probability 21−2n for each future π evaluation in a
direct offline π-query or inside a next LEnc or LDec query. Of course we do not know in
advance what will be the right (V ‖1, Z) and the right user i until the adversary output its
forgery ciphertext in the finalization phase. So, if (ij , Vj‖1, Zj) denotes the input of the
leaking inversion of E in the j-th leaking decryption query, we actually defines qd targets
(U∗j , V j‖1, Zj), since necessarily i < qd + 1 here. Therefore, the probability that this case
occurs is upper-bounded by qdQ/22n−1, which completes the proof.

9 Conclusion
This paper discusses the Spook AEAD, which is designed to support low-energy implemen-
tations that are side-channel resistant, and is based in a permutation and a TBC.
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By reporting new implementation results on a variety of platforms, we first demonstrate
that the overheads resulting from the use of two primitives is actually marginal, thanks
to the adoption of a TBC and a permutation that share most of their components. Our
implementation results are in the most unfavorable conditions for Spook: we consider a
setting without any specific protection against side-channel attacks. We conjecture that
the benefits of the Spook design would become even more visible when countermeasures
against side-channel attacks need to be implemented, since the leveled design of Spook
would then come into play. As SCA protection strategies can differ between schemes, it is
an important open question to establish how an informative comparison could be made
between various designs, while targeting a common level of security.

As a second new contribution, this paper also offers an analysis of the integrity
properties of the Spook design, based on the assumption that its underlying TBC remains
unpredictable despite its leakage on past queries (and that the permutation leaks its state
in full). This contrasts with the previously proposed analysis that assumed the TBC to be
leak-free. The resulting security bounds remain quite satisfactory, and beyond-birthday in
particular. It is another open problem to explore whether similar results could be obtained
for confidentiality properties, and whether the security bounds could still be improved (in
particular, by making a finer-grained analysis of the multi-user setting).

Acknowledgments. The authors are grateful to Patrick Derbez, Paul Huynh, Virginie
Lallemand, Léo Perrin, Maria Naya Plasencia and Andre Schrottenloher for sharing their
analysis of Shadow and Spook and discussing tweaks. We specially thank Maria Naya
Plasencia for numerous interactions. Gaëtan Cassiers, Thomas Peters and François-Xavier
Standaert are respectively PhD Student, Post-Doctoral Researcher and Senior Research
Associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been
funded in part by European Union and the Walloon Region through the ERC Project
724725 (acronym SWORD), the FEDER Project USERMedia (convention 501907-379156),
the H2020 project REASSURE and the Wallinov TRUSTEYE project.

References
[ADL17] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated

Encryption Robustness with Minimal Modifications. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 20-24, 2017, Proceedings, Part III, volume 10403 of LNCS, pages 3–33.
Springer, 2017.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-Level vs. Implementation-Level Physical Security in Sym-
metric Cryptography: A Practical Guide Through the Leakage-Resistance
Jungle. Cryptology ePrint Archive, Report 2020/211, 2020. https://eprint.
iacr.org/2020/211.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Security, Auck-
land, New Zealand, November 29 - December 3, 2015, Proceedings, Part II,
volume 9453 of LNCS, pages 411–436. Springer, 2015.

https://eprint.iacr.org/2020/211
https://eprint.iacr.org/2020/211


Bellizia et al. 27

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-
Order Differential Properties of Keccak and Luffa. In Antoine Joux, editor,
Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby,
Denmark, February 13-16, 2011, Revised Selected Papers, volume 6733 of
LNCS, pages 252–269. Springer, 2011.

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving
Resistance Against Invariant Attacks: How to Choose the Round Constants.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, volume 10402
of LNCS, pages 647–678. Springer, 2017.

[BDLF10] Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain
Fouque. Another Look at Complementation Properties. In Seokhie Hong and
Tetsu Iwata, editors, Fast Software Encryption, 17th International Workshop,
FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Selected Papers, volume
6147 of Lecture Notes in Computer Science, pages 347–364. Springer, 2010.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications.
In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography -
18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,
2011, Revised Selected Papers, volume 7118 of LNCS, pages 320–337. Springer,
2011.

[Beh19] Behnaz Rezvani and William Diehl. Hardware implementations of NIST
lightweight cryptographic candidates: A first look. Cryptology ePrint Archive,
Report 2019/824, 2019. https://eprint.iacr.org/2019/824.

[BGP+19] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. Strong Authenticity with Leakage under Weak and Falsifi-
able Physical Assumptions. Cryptology ePrint Archive, Report 2019/1413,
2019. https://eprint.iacr.org/2019/1413 – Extended abstract to appear
at Inscrypt 2019.

[BGP+20] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. TEDT, a Leakage-Resist AEAD Mode for High Phys-
ical Security Applications. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(1):256–320, 2020.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
LNCS, pages 123–153. Springer, 2016.

[BKP+18] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Ciphertext Integrity with Misuse and Leakage:
Definition and Efficient Constructions with Symmetric Primitives. In Jong
Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo
Kim, editors, Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, AsiaCCS 2018, Incheon, Republic of Korea, June
04-08, 2018, pages 37–50. ACM, 2018.

https://eprint.iacr.org/2019/824
https://eprint.iacr.org/2019/1413


28 Spook

[BMOS17] Guy Barwell, Daniel P. Martin, Elisabeth Oswald, and Martijn Stam. Au-
thenticated Encryption in the Face of Protocol and Side Channel Leakage.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Appli-
cations of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 693–723. Springer, 2017.

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Stan-
daert. On Leakage-Resilient Authenticated Encryption with Decryption
Leakages. IACR Trans. Symmetric Cryptol., 2017(3):271–293, 2017.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier
Standaert. Hardware Private Circuits: From Trivial Composition to Full
Verification. Cryptology ePrint Archive, Report 2020/185, 2020. https:
//eprint.iacr.org/2020/185.

[CGP+19] Gaëtan Cassiers, Chun Guo, Olivier Pereira, Thomas Peters, and François-
Xavier Standaert. SpookChain: Chaining a Sponge-Based AEAD with Beyond-
Birthday Security. In Shivam Bhasin, Avi Mendelson, and Mridul Nandi,
editors, Security, Privacy, and Applied Cryptography Engineering - 9th Inter-
national Conference, SPACE 2019, Gandhinagar, India, December 3-7, 2019,
Proceedings, volume 11947 of Lecture Notes in Computer Science, pages 67–85.
Springer, 2019.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations. In Yuliang Zheng, editor, Advances in
Cryptology - ASIACRYPT 2002, 8th International Conference on the Theory
and Application of Cryptology and Information Security, Queenstown, New
Zealand, December 1-5, 2002, Proceedings, volume 2501 of LNCS, pages
267–287. Springer, 2002.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - Towards Side-Channel Secure Authenticated
Encryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.

[DHL+20] Patrick Derbez, Paul Huynh, Virginie Lallemand, María Naya-Plasencia, Léo
Perrin, and André Schrottenloher. Cryptanalysis Results on Spook. Cryptology
ePrint Archive, Report 2020/309, 2020. https://eprint.iacr.org/2020/
309.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS Matrices with Lightweight Circuits.
IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of LNCS, pages 606–637. Springer, 2017.

[DR01] Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In
Bahram Honary, editor, Cryptography and Coding, 8th IMA International
Conference, Cirencester, UK, December 17-19, 2001, Proceedings, volume 2260
of LNCS, pages 222–238. Springer, 2001.

https://eprint.iacr.org/2020/185
https://eprint.iacr.org/2020/185
https://eprint.iacr.org/2020/309
https://eprint.iacr.org/2020/309


Bellizia et al. 29

[DS09a] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Poly-
nomials. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT
2009, 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings,
volume 5479 of LNCS, pages 278–299. Springer, 2009.

[DS09b] Yevgeniy Dodis and John P. Steinberger. Message Authentication Codes from
Unpredictable Block Ciphers. In Shai Halevi, editor, Advances in Cryptology
- CRYPTO 2009, 29th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture
Notes in Computer Science, pages 267–285. Springer, 2009.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GLS+14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
rançois Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM &
iSCREAM Side-Channel Resistant Authenticated Encryption with Masking,
Submission to the CAESAR competition, 2014.

[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem
Varici. LS-Designs: Bitslice Encryption for Efficient Masked Software Imple-
mentations. In Carlos Cid and Christian Rechberger, editors, Fast Software
Encryption - 21st International Workshop, FSE 2014, London, UK, March 3-5,
2014. Revised Selected Papers, volume 8540 of LNCS, pages 18–37. Springer,
2014.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The LED Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2011 - 13th International
Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings, volume
6917 of LNCS, pages 326–341. Springer, 2011.

[GPPS19a] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Authenticated Encryption with Nonce Misuse and Physical Leakage: Defi-
nitions, Separation Results and First Construction - (Extended Abstract).
In Peter Schwabe and Nicolas Thériault, editors, Progress in Cryptology -
LATINCRYPT 2019 - 6th International Conference on Cryptology and In-
formation Security in Latin America, Santiago de Chile, Chile, October 2-4,
2019, Proceedings, volume 11774 of Lecture Notes in Computer Science, pages
150–172. Springer, 2019.

[GPPS19b] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards Low-Energy Leakage-Resistant Authenticated Encryption from the
Duplex Sponge Construction. Cryptology ePrint Archive, Report 2019/193,
2019. https://eprint.iacr.org/2019/193.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking
Be in Software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of LNCS,
pages 567–597, 2017.

https://eprint.iacr.org/2019/193


30 Spook

[GRR16] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace Trail
Cryptanalysis and its Applications to AES. IACR Trans. Symmetric Cryptol.,
2016(2):192–225, 2016.

[HRRV15] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár.
Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. In
Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of LNCS, pages
493–517. Springer, 2015.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part
II, volume 8874 of LNCS, pages 274–288. Springer, 2014.

[KDH+12] Stéphanie Kerckhof, François Durvaux, Cédric Hocquet, David Bol, and
François-Xavier Standaert. Towards Green Cryptography: A Comparison of
Lightweight Ciphers from the Energy Viewpoint. In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems -
CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12,
2012. Proceedings, volume 7428 of LNCS, pages 390–407. Springer, 2012.

[KN10] Dmitry Khovratovich and Ivica Nikolic. Rotational Cryptanalysis of ARX.
In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption, 17th
International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised
Selected Papers, volume 6147 of Lecture Notes in Computer Science, pages
333–346. Springer, 2010.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, volume 6841 of Lecture Notes in Computer Science, pages 206–221.
Springer, 2011.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A Generic Approach to
Invariant Subspace Attacks: Cryptanalysis of Robin, iSCREAM and Zorro.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, volume 9056 of LNCS, pages 254–283. Springer,
2015.

[LTW18] Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. Searching for
Subspace Trails and Truncated Differentials. IACR Trans. Symmetric Cryptol.,
2018(1):74–100, 2018.

[MMGD17] Elodie Morin, Mickael Maman, Roberto Guizzetti, and Andrzej Duda. Com-
parison of the Device Lifetime in Wireless Networks for the Internet of Things.
IEEE Access, 5:7097–7114, 2017.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr



Bellizia et al. 31

Dunkelman, editor, Fast Software Encryption, 16th International Workshop,
FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected Papers,
volume 5665 of Lecture Notes in Computer Science, pages 260–276. Springer,
2009.

[MSGR10] Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and
Francesco Regazzoni. Fresh Re-keying: Security against Side-Channel and
Fault Attacks for Low-Cost Devices. In Daniel J. Bernstein and Tanja Lange,
editors, Progress in Cryptology - AFRICACRYPT 2010, Third International
Conference on Cryptology in Africa, Stellenbosch, South Africa, May 3-6,
2010. Proceedings, volume 6055 of LNCS, pages 279–296. Springer, 2010.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-
mentation of Nonlinear Functions in the Presence of Glitches. J. Cryptology,
24(2):292–321, 2011.

[Pey10] Thomas Peyrin. Improved Differential Attacks for ECHO and Grøstl. In Tal
Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings,
volume 6223 of Lecture Notes in Computer Science, pages 370–392. Springer,
2010.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
Resilient Authentication and Encryption from Symmetric Cryptographic
Primitives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, Denver, CO, USA, October 12-16, 2015, pages 96–108.
ACM, 2015.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of
the Key-Wrap Problem. In Serge Vaudenay, editor, Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28
- June 1, 2006, Proceedings, volume 4004 of LNCS, pages 373–390. Springer,
2006.

[RSWO18] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT
Goes Nuclear: Creating a Zigbee Chain Reaction. IEEE Security & Privacy,
16(1):54–62, 2018.

[SPY13] François-Xavier Standaert, Olivier Pereira, and Yu Yu. Leakage-Resilient
Symmetric Cryptography under Empirically Verifiable Assumptions. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 335–352. Springer, 2013.

[Sta19] François-Xavier Standaert. Towards and Open Approach to Secure Cryp-
tographic Implementations (Invited Talk). In Yuval Ishai and Vincent Ri-
jmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part I, volume 11476 of Lecture Notes in Computer Science, pages xv,
https://www.youtube.com/watch?v=KdhrsuJT1sE. Springer, 2019.

https://www.youtube.com/watch?v=KdhrsuJT1sE


32 Spook

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear Invariant Attack -
Practical Attack on Full SCREAM, iSCREAM, and Midori64. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part II, volume 10032 of LNCS, pages 3–33, 2016.

[Tod15] Yosuke Todo. Structural Evaluation by Generalized Integral Property. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of LNCS, pages 287–314. Springer, 2015.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on
AES, and Countermeasures. J. Cryptology, 23(1):37–71, 2010.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against Side-Channel Attacks: A Comprehensive
Study with Cautionary Note. In Xiaoyun Wang and Kazue Sako, editors,
Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference
on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of LNCS, pages 740–757.
Springer, 2012.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
Method to Searching Integral Distinguishers Based on Division Property for 6
Lightweight Block Ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 648–678, 2016.



Bellizia et al. 33

A TETSponge mode of operation: specifications
Notation. For a bitstring S = b0 . . . bm−1, we denote the bitstring of first bits b0 . . . bx−1 as
S[: x] and we denote the bitstring of last bits bx . . . bm−1 as S[x :].

Algorithm 3 TETSponge[E, π].Enc(A,M , N,K||P ).
1. `← d|M |/re, λ← d|A|/re;
2. Parse M as M [0]‖ . . . ‖M [`− 1], with |M [0]| = . . . = |M [`− 2]| = r and 1 ≤ |M [`− 1]| ≤ r;

3. Parse A as A[0]‖ . . . ‖A[λ−1], with |A[0]| = . . . = |A[λ−2]| = r and 1 ≤ |A[λ−1]| ≤ r;

4. B ← EP‖0K (N‖0∗);
5. IV ← P‖0‖N‖0∗ (with size r + c− n);
6. S0 ← π(IV ‖B);
7. if λ ≥ 1 then

(a) for i = 0 to λ− 2 do
• Si ← Si ⊕ (A[i]‖0c);
• Si+1 ← π(Si);

(b) if |A[λ− 1]| < r then
• A[λ− 1]← A[λ− 1]‖10r−|A[λ−1]|−1;
• Sλ−1 ← Sλ−1 ⊕ (0r‖01‖0c−2);

(c) Sλ−1 ← Sλ−1 ⊕ (A[λ− 1]‖0c);
(d) Sλ ← π(Sλ−1);

8. if ` ≥ 1 then

(a) Sλ ← Sλ ⊕ (0r‖10‖0c−2);
(b) for i = 0 to `− 2 do

• j ← i+ λ;
• C[i]← Sj [: r]⊕M [i];
• Sj ← C[i]‖Sj [r :];
• Sj+1 ← π(Sj);

(c) C[`− 1]← Sλ+`−1[: |M [`− 1]|]⊕M [`− 1];
(d) if |C[`− 1]| < r then

• Sλ+`−1 ← Sλ+`−1 ⊕ (0|C[`−1]|‖10r−|C[`−1]|−1‖01‖0c−2);
• Sλ+`−1 ← C[`− 1]‖Sλ+`−1[|C[l − 1]| :];

(e) else Sλ+`−1 ← C[`− 1]‖Sλ+`−1[r :];
(f) Sλ+` ← π(Sλ+`−1);

9. U ||V ← Sλ+`[: 2n− 1];

10. Z ← EV ||1K (U);
11. c← C[0]‖ . . . ‖C[`− 1], C ← c||Z;
12. return C;
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Algorithm 4 TETSponge[E, π].Dec(A,C, N,K||P ).

1. `← d |C|−nr e, λ← d|A|/re;
2. Parse C as C[0]‖ . . . ‖C[`− 1]||Z, with |C[0]| = . . . = |C[`− 2]| = r, 1 ≤ |C[`− 1]| ≤ r and |Z| = n;

3. Parse A as A[0]‖ . . . ‖A[λ−1], with |A[0]| = . . . = |A[λ−2]| = r and 1 ≤ |A[λ−1]| ≤ r;

4. B ← EP‖0K (N‖0∗);
5. IV ← P‖0‖N‖0∗ (with size r + c− n);
6. S0 ← π(IV ‖B);
7. if λ ≥ 1 then

(a) for i = 0 to λ− 2 do
• Si ← Si ⊕ (A[i]‖0c);
• Si+1 ← π(Si);

(b) if |A[λ− 1]| < r then
• A[λ]← A[λ− 1]‖10r−|A[λ−1]|−1;
• Sλ−1 ← Sλ−1 ⊕ (0r‖01‖0c−2);

(c) Sλ−1 ← Sλ−1 ⊕ (A[λ− 1]‖0c);
(d) Sλ ← π(Sλ−1);

8. if ` ≥ 1 then

(a) Sλ ← Sλ ⊕ (0r‖10‖0c−2);
(b) for i = 0 to `− 2 do

• j ← i+ λ;
• M [i]← Sj [: r]⊕ C[i];
• Sj ← C[i]‖Sj [r :];
• Sj+1 ← π(Sj);

(c) M [`− 1]← Sλ+`−1[: |C[`− 1]|]⊕ C[`− 1];
(d) if |C[`− 1]| < r then

• Sλ+`−1 ← Sλ+`−1 ⊕ (0|C[`−1]|‖10r−|C[`−1]|−1‖01‖0c−2);
• Sλ+`−1 ← C[`− 1]‖Sλ+`−1[|C[l − 1]| :];

(e) else Sλ+`−1 ← C[`− 1]‖Sλ+`−1[r :];
(f) Sλ+` ← π(Sλ+`−1);

9. U ||V ← Sλ+`[: 2n− 1];

10. U∗ ←
(
EV ||1K

)−1(Z);
11. if U 6= U∗ then return ⊥;
12. else if ` > 0 then return M [0]‖ . . . ‖M [`− 1];
13. else return true;
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B Cases of the TETSponge mode of operation
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Figure 3: Different cases of the TETSponge mode of operation.
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C Clyde-128 and Shadow-512 illustrations
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Figure 4: Round and step of Clyde-128: high-level view.
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Figure 5: Round and step of Shadow-512: high-level view.



Bellizia et al. 37

D Clyde-128 and Shadow-512 components

Figure 6: 32 parallel executions of the Clyde-128 and Shadow-512 S-box.
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Figure 7: Clyde-128 and Shadow-512 L-box.

Figure 8: Shadow-512 diffusion layer.
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E Inverse S-box implementation
• y[3] = (x[0]� x[1])⊕ x[2];
• y[0] = (x[1]� y[3])⊕ x[3];
• y[1] = (y[3]� y[0])⊕ x[0];
• y[2] = (y[0]� y[1])⊕ x[1];

F Inverse L-box implementation
• a = x⊕ rot(x, 25);
• b = y ⊕ rot(y, 25);
• c = x⊕ rot(a, 31);
• d = y ⊕ rot(b, 31);
• c = c⊕ rot(a, 20);
• d = d⊕ rot(b, 20);
• a = c⊕ rot(c, 31);
• b = d⊕ rot(d, 31);
• c = c⊕ rot(b, 26);
• d = d⊕ rot(a, 25);
• a = a⊕ rot(c, 17);
• b = b⊕ rot(d, 17);
• a = rot(a, 16);
• b = rot(b, 16);
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G Spook v2 illustrations & equations
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Figure 9: Spook v2 mode (switching P ||0||N ||0∗ and B in the first Shadow-512 call).
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Figure 10: Shadow-512 v2 diffusion layer.

Shadow v2 diffusion. We use the ring of polynomials modulo x32 + x8 + 1 with α = x.

Shadow-512 v2

x0 := x0 ⊕ x1

x2 := x2 ⊕ x3

x1 := x1 ⊕ x2

x3 := x3 ⊕ αx0

x1 := αx1

x0 := x0 ⊕ x1

x2 := x2 ⊕ αx3

x1 := x1 ⊕ x2

x3 := x3 ⊕ x0

y0 := x0

y1 := x1

y2 := x2

y3 := x3

Shadow-384 v2

a := x0 ⊕ x1

b := x0 ⊕ x2

c := x1 ⊕ b
d := a⊕ αb
y0 := b⊕ d
y1 := c

y2 := d
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Figure 11: Round and step of Shadow-512 v2: high-level view.
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H Spook v2 performances
The modifications of Spook v2 with respect to Spook v1 have an impact on the performance.
In order to evaluate it, we implemented Spook v2 on the same platforms as Spook v1
(excepted in the high-end processors case for SIMD with 256 and 512 bit words, which
were not bringing improvement over 128 bit SIMD in the Spook v1 case, which expect to
be similar for Spook v2). We next observe the combined impact of the change of D-box,
the change of round constants and the change in the initial state of Shadow.

H.1 Software implementations
For high-end platforms, the D-box change has the most significant impact (since it requires
to transpose the Shadow state when viewed as a 4x4 matrix of 32-bit words), while the
impact of the change of constants remains small since these constants are pre-computed
anyway (and loads use different computing resources than the main computation). Overall,
Spook v2 increases the cost by up to 22% on the selected platform.

For embedded platforms, Spook v2 either increases slightly (up to 2.5%) or reduces (up
to 19%) the cost of software implementations, depending on the platorm and optimisation
target. This is the combination of the cost increase of the D-box and the cost reduction of
the constants, while the initialization change has no performance impact.

We note that in the case of size-optimized code, Spook v2 is faster on all the considered
platforms. In this setting, the compiler does not inline functions (e.g., S-boxes), forcing
the state to be stored in memory. Therefore before each constant addition, parts of the
state have to be loaded from memory (and stored back afterwards). In Spook v1 (resp.,
Spook v2), at least 16 (resp., 4) loads and stores are needed in each round.

Table 15: High-end software performance results. Number of cycles compiled for various
micro-architectures, and throughput (cycles per byte) for a message of 2048 bytes. The
percentages are the comparison with the Spook v1 corresponding metrics. The Shadow-512
v2 32-bit implementatuib exhibits large cost increase on some platoforms due to the
inability of the compiler to perform some (vectorization) optimizations.

x86-64 (SSE2) Haswell (AVX2) Skylake-AVX512
Shadow-512 v2 (32-bit) 959 (105%) 831 (233%) 830 (242%)
Shadow-512 v2 (128-bit) 474 (116%) 444 (112%) 362 (119%)

Spook v2 (C32bit-S128bit) 15.3 (115%) 15.1 (114%) 12.3 (122%)

Table 16: Size-optimized performances on embedded platforms (-Os). The percentages
are the comparison with the Spook v1 corresponding metrics.

Size Clyde-128 Shadow-512 v2 Spook v2
[Bytes] [Cycles] [Cycles] [Cycles/byte]

Cortex-M0 1864 (96%) 3274 (100%) 7520 (87%) 266
Cortex-M3 1860 (99%) 1763 (100%) 4394 (80%) 152
RI5CY 2044 (96%) 1851 (100%) 4309 (91%) 149
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Table 17: Speed-optimized performances on embedded platforms (-O3). The percentages
are the comparison with the Spook v1 corresponding metrics.

Size Clyde-128 Shadow-512 v2 Spook v2
[Bytes] [Cycles] [Cycles] [Cycles/byte]

Cortex-M0 4576 (99%) 2450 (100%) 5192 (82%) 169
Cortex-M3 3951 (103%) 802 (100%) 2407 (103%) 79
RI5CY 4624 (100%) 1259 (100%) 3787 (93%) 123

H.2 Hardware implementations
For the hardware implementations, the main change is that the combination of an S-box
layer and a D-box layer cannot be split as a parallel combination of small permutations.
Therefore, we changed the hardware architecture as illustrated in Figure 12, where the
S-box of round B is moved to the round A. We additionally move the digestion unit, now
performed during the round B instead of round A, in order to limit the critical path.
Furthermore, the new constants are generated sequentially from an LFSR, forcing the
bundles to be processed in-order (while it was out-of-order in the v1 architecture). This
is done at zero cost thanks to the change in the initial state of Shadow. The slightly
increased logic depth of the round A logic has a limited (3%) impact on the maximum
frequency. Overall, the changes have thus a slight impact on the area requirement (4%)
and a slightly larger impact on the energy consumption (about 15%).

Table 18: Spook v2: Artix-7 implementations results (post place-and-route). The percent-
ages are the comparison with the Spook v1 corresponding metrics.

Nu Opt. Slices Regs LUTs Freq. Lat. TP TPA
Strat. [MHz] [Cycles] [Mbps] [Mbps/LUT]

8 Speed 567 (100%) 1481 (102%) 2132 (101%) 179 (97%) 48 (100%) 954 (97%) 0.447 (96%)

Table 19: Spook v2 ASIC implementation results (post place-and-route) with Nu = 8.
The percentages are the comparison with the Spook v1 corresponding metrics.

Area Max. Freq Power Throughput Energy
[kGE] [MHz] [mW] [Mbps] [pJ/bit]

18.2 (104%) 403 (97%) 8.75 (106%) 2149 (97%) 4.07 (109%)
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Table 20: Impact of clock frequency on the ASIC results with Nu = 8. The percentages
are the comparison with the Spook v1 corresponding metrics.

Frequency [MHz] Power [mW] Throughput [Mbps] Energy [pJ/bit]
403 8.75 2149 4.07
400 8.4 (100%) 2133 3.93
333 7.4 (111%) 1776 4.16
100 2.2 (112%) 533.3 4.125
10 0.22 (133%) 53.3 4.125
0.10 0.004 0.53 8.43
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I Deferred muCIML2 proof for Spook
Proof. To prove the theorem, we use a sequence of games. Given an adversary A, we
start with Game 0 which is the muCIML2A,Spook,L∗,u experiment and we end with a game
where all the leaking decryption queries (ij , Nj , Aj , Cj) are deemed invalid, including the
last and (qd + 1)-th decryption which tests the validity of the potential forgery ciphertext
(i,N,A,C). In the sequel, we make use of the notations introduced on Page 24.

Game 0. This game is depicted in Table 14. Let E0 be the event that the adversary AL∗

wins this game, that is, the output of the experiment is 1.

Game 1. We introduce a failure event F1 with respect to Game 0, where F1 occurs if
among the at most Q ≤ σ+ qπ + qe + qd + 1 distinct computations of forward or backward
evaluations of π there is at least one collision on the last c− 2 = 2n− 2 bits or the first
2n− 1 bits of any outputs. In Game 1, if F1 occurs we abort the game and return 0. We
let E1 be the event that the adversary AL∗ wins this game.

Bounding |Pr[E0]− Pr[E1]|. Since Game 0 and Game 1 are identical as long as F1 does
not occur, and 4 ≤ Q, we have:

|Pr[E0]− Pr[E1]| ≤ Pr[F1] ≤ Q2/22n−3.

Note: from now on, in the case of a winning adversary, no TBC quadruple of the form
(i, ?, V ‖1, Z) appears when answering to an LEnc query.

Game 2. We introduce a failure event F2 with respect to Game 1, where F2 occurs if
there is an LDec query, including the forgery ciphertext, on some (i′, N ′, A′, C ′ = c′‖Z ′)
such that the ciphertext is valid and the TBC quadruple (i′, U ′, V ′‖1, Z ′) appears for the
first time in an LDec query. Then, Pr[E1] ≤ Pr[E2] + Pr[E1|F2], where E2 = E1|¬F2.

Bounding Pr[E1|F2]. A straightforwards argument gives Pr[F2] ≤ (qd + 1)ε.

Game 3. We introduce a failure event F3 with respect to Game 2, where F3 occurs if, at
the end of the game, there is an input-output couple (R,S) defined in the π-history from
a backward query and R = ?‖ ? ‖0n‖?. By definition, E3 = E2|¬F3.

Bounding Pr[F3]. It comes to bound the probability of computing a preimage to that
0n which gives Pr[F3] ≤ qπ/2n, since 2r+c/23n = 2n. Note: from now on, since F1 ∪ F3
no more occur for a winning adversary, U‖V can only be reached by a chain of states
computed exclusively from some input ?‖ ? ‖0n‖? by forward evaluations of π.

Game 4. We modify the winning condition of the previous game. In the finalization,
once A outputs (i,N,A,C = c‖Z) we say that A does not win and returns 0 if A fails
as before or if π(Rλ+`) = U‖V appears before the first apparition of (V ‖1, Z) as input
to E−1

Ki
in a leaking decryption query. If we call F4 the event that makes the adversary

winning in Game 3 but loosing in Game 4, we have |Pr[E4]− Pr[E3]| ≤ Pr[E3|F4], where
E4 = E3|¬F4 is the event that A wins in this game.

Bounding Pr[E′4], for E′4 := E3|F4. If we call Dj the event that the first time (V ‖1, Z)
appears during the computation of the answer to a leaking decryption query is in the j-th
leaking decryption query (ij , Nj , Aj , Cj = cj‖Zj), that is necessarily invalid if E′4 occurs,
we just have to bound Pr[E′4 ∩ Vj ], for all j = 1 to qd. (Note that we do not have to guess
the user i with such an argument.) When we process the j-th leaking decryption query
until the computation of Uj‖Vj , we know that Vj = V and Zj = Z. At that time, let qj be
the total number of forward π evaluations made (online or offine) in the experiment. Let
also Sj be the random variable counting the number of “V-collisions” with Vj , for j = 1 to
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qd. (Note that Sj ≥ 2 if E′4 occurs.) We have:

Pr[E′4 ∩Dj ] =
qj∑
s=2

Pr[E′4 | Dj ∩ Sj= s] · Pr[Dj ∩ Sj= s]

≤
qj∑
s=2

s−1∑
k=1

Pr[E′4 | Dj ∩ Sj= s ∩Hj,k] · Pr[V-Coll(qj) ≥ s],

where Hj,k is the event that among the s distinct input state that “V ”-collide on Vj the
k-th one is Rλ+`. By convention, we always see Rjλj+`j as the s-th and last such message
even if the computation of π(Rjλj+`j ) appears earlier than in the j-th LDec query13. Note
that Pr[E′4|Hj,s] = 0. For each k = 1 to s − 1, it is now easy to see that the event
E′4 | (Dj ∩ Sj =s ∩ Hj,k) reduces to muSUL2 by using the first 2n− 1 bits of the output
state of the k-th “V-collisions,” say Uj,k‖Vj,k with Vj,k = Vj , and Zj to compute the
quadruple (ij , Uj,k, Vj , Zj) as our guess against the TBC. Therefore,

Pr[E′4 ∩Dj ] ≤ ε ·
qj∑
s=2

(s− 1) · Pr[V-Coll(qj) ≥ s]

≤ ε · 1
2n−1

(
qj
2

)(
1 + 2qj

2n−1

)
by lemma 1, since 2qj ≤ 2Q ≤ 2n−3 ≤ 2n−1 by assumption on the number of queries. In
addition, 1 + 2qj/2n ≤ 5/4. Summing on all the j’s, gives:

Pr[E′4] ≤ ε · 1
2n−1 ·

5
4 ·

qd∑
j=1

(
qj
2

)
.

Some basic computation shows that
∑qd

j=1
(
qj

2
)
≤
∑qd

j=1
(
Q−qd+j

2
)
≤ 1

2qdQ
2(1 + 2qd

Q ), if
qd ≤ Q. But then, as qd ≤ Q/4 by assumption, we have:

Pr[E′4] ≤ qdQ
2

2n−1 · ε.

Game 5. In this game we follow the specification of muCIML2A,Spook,L∗ except that we
always output 0 at the end of the game.
Bounding |Pr[E5]− Pr[E4]| = Pr[E4]. We end by showing that winning while the TBC
input (V ‖1, Z) for inversion appears when answering a leaking decryption query before the
computation of H(Rλ+`) is negligible. For each (Vj , Zj) that appears when answering a
leaking decryption query and before any fresh computation of some π(R′), the probability
that π(R′)[: 2n− 1] = U∗j ‖Vj is 1/22n−1 since the value π(R′)[: 2n− 1] remains uniform
and independent of the adversary’s view. (Note that we still do not have to make a guess
on i with this argument.) We now count the number of tries a winning adversary can
make in it that case. Considering the event Dj as in the previous analysis of Game 4,
in E4 ∩Dj there at most Q− 2j remaining π evaluations left after the j-th LDec query.
Then, Pr[E4|Dj ] ≤ Q/22n−1, for i = 1 to qd. Note that Pr[E4|Dqd+1] = 0 by definition.
Finally, we get:

Pr[E4] ≤ qdQ

22n−1 ·

Hence, the bound of the theorem.
13 Note that this is without loss of generality as the enumeration only matters in the reduction at

the time we get the adversary’s j-th LDec query (ij , Nj , Aj , Cj). The choice of (which is) the k-th state
colliding on Vj can be made once the s input states are known.
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The leading term that bounds the advantage is qdQ
2

2n−1ε−1 . Any improvement of the term
will give roughly the same improvement of the bound. In that respect, we can see that
qj ≤ Q− qd + j is a pretty loose upper-bound. Indeed, it does not take into account that
the among qj forward evaluations of π the input-output couple must be “castable” in a
next LDec query. A scope of improvement is thus to figure out whether an input-output
pair of π can be among the chain of states for two different users. This direction could
lead to a further ε dues to the fact that the adversary implicitly attacks E during the
first evaluation of E in encryption or decryption. Furthermore, it could be shown that
qj1 + · · ·+ qjl

≤ Q, for some l ≤ qd, as long as all the users ij1 , . . . , ijl
are pairwise distinct.

Finally, it could be worth determining if actually among the π input-output to take into
account in q1 + ·+ qd, the total is actually bound by some value not too bigger than Q,
which will save, hopefully, a factor less but close to Q.

I.1 Multi-Collisions
Let 1 ≤ s ≤ q ≤ N . We consider the experiment where we uniformly throw q balls at
random into N bins. MultiColl(N, q) ≥ s denotes the event that at least one bin contains
at least s balls. We recall a useful upper-bound on the probability of multi-collisions.

Theorem 2.

Pr[MultiColl(N, q) ≥ s] ≤ 1
Ns−1

(
q

s

)
.

We also need the following technical result.

Lemma 1. If 2q ≤ N ,
q∑
s=1

(s− 1) · Pr[MultiColl(N, q) ≥ s] ≤ 1
N

(
q

2

)(
1 + 2q

N

)
.

Proof. Looking at the generic term for s ≥ 3 after applying the theorem leads to:

s− 1
Ns−1

(
q

s

)
≤ 1
Ns−2

(
q

s− 1

)
· q
N
≤ 1
N

(
q

2

)
·
( q
N

)s−2
.

Then, the whole sum is upper-bounded by:

1
N

(
q

2

)
·
q∑
s=2

( q
N

)s−2
≤ 1
N

(
q

2

)
N

N − q
= 1
N

(
q

2

)(
1 + q

N − q

)
.

Hence, the result since q ≤ N − q.

J MILP Model for Division Property Analysis
SageMath code to generate the MILP model for the division property analysis of Clyde-128
is listed below. For easier verification and further work, it can also be found online at
https://gist.github.com/pfasante/3a2f087e74cd0f2a10853c8a5d036d85.

from sage.crypto.boolean_function import BooleanFunction
from sage.crypto.sbox import SBox

def algebraic_normal_form(self):
"""
Computes the algebraic normal forms (ANFs) of every coordinate.

https://gist.github.com/pfasante/3a2f087e74cd0f2a10853c8a5d036d85
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"""
n = self.input_size()
return [self.component_function(i).algebraic_normal_form()

for i in [1<<j for j in range(n)]]

SBox.algebraic_normal_form = algebraic_normal_form

def division_trail(self, k):
"""
Computes the output division property for the starting input dp k.

INPUT:

- ‘‘k‘‘, the input division property
"""

def gt(a, b):
"""
check whether a >= b
"""
from operator import ge
return all(map(lambda x: ge(*x), zip(a, b)))

n = self.input_size()

S = set()
for e in range(2^n):

kbar = ZZ(e).digits(base=2, padto=n)
if gt(kbar, k):

S.add(tuple(kbar))

ys = self.algebraic_normal_form()[::-1]
P = ys[0].ring()
x = P.gens()[::-1]

F = set()
for kbar in S:

F.add(P(prod([x[i] for i in range(n) if kbar[i] == 1])))

Kbar = set()
for e in range(2^n):

u = ZZ(e).digits(base=2, padto=n)
puy = prod([ys[i] for i in range(n) if u[i] == 1])
puyMon = P(puy).monomials()
contains = False
for mon in F:

if mon in puyMon:
contains = True
break

if contains:
Kbar.add(tuple(u))
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K = []
for kbar in Kbar:

greater = False
for kbar2 in Kbar:

if(kbar != kbar2 and gt(kbar, kbar2)):
greater = True
break

if not greater:
K.append(kbar)

return sorted(K)

SBox.division_trail = division_trail

def division_trail_table(self):
"""
Return a dict containing all possible division propagation of the SBOX,
where y is a list containing the ANF of each output bits
"""
n = self.input_size()

D = dict()
for c in range(2^n):

k = tuple(ZZ(c).digits(base=2, padto=n))
D[k] = self.division_trail(k)

return D

SBox.division_trail_table = division_trail_table

def sbox_inequalities(sbox, analysis="differential", algorithm="greedy", big_endian=False):
"""
Computes inequalities for modeling the given S-box.

INPUT:

- ‘‘sbox‘‘ - the S-box to model
- ‘‘analysis‘‘ - string, choosing between ’differential’ and ’linear’ cryptanalysis

or ’division_property’
(default: ‘‘differential‘‘)

- ‘‘algorithm‘‘ - string, choosing the algorithm for computing the S-box model,
one of [’none’, ’greedy’, ’milp’] (default: ‘‘greedy‘‘)

- ‘‘big_endian‘‘ - representation of transitions vectors (default: little endian)
"""
ch = convex_hull(sbox, analysis, big_endian)

if algorithm is "greedy":
return cutting_off_greedy(ch)

elif algorithm is "milp":
return cutting_off_milp(ch)

elif algorithm is "none":
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return list(ch.inequalities())
else:

raise ValueError("algorithm (%s) has to be one of [’greedy’, ’milp’]" % \
(algorithm,))

SBox.milp_inequalities = sbox_inequalities

def convex_hull(sbox, analysis="differential", big_endian=False):
"""
Computes the convex hull of the differential or linear behaviour of the given S-box.

INPUT:

- ‘‘sbox‘‘ - the S-box for which the convex hull should be computed
- ‘‘analysis‘‘ - string choosing between differential and linear behaviour

(default: ‘‘differential‘‘)
- ‘‘big_endian‘‘ - representation of transitions vectors (default: little endian)
"""
from sage.geometry.polyhedron.constructor import Polyhedron

if analysis is "differential":
valid_transformations_matrix = sbox.difference_distribution_table()

elif analysis is "linear":
valid_transformations_matrix = sbox.linear_approximation_table()

elif analysis is "division_property":
valid_transformations = sbox.division_trail_table()

else:
raise TypeError("analysis (%s) has to be one of [’differential’, ’linear’]" % \

(analysis,))

if analysis is "division_property":
points = [tuple(x) + tuple(y)

for x, ys in valid_transformations.iteritems() for y in ys]
else:

n, m = sbox.input_size(), sbox.output_size()

if big_endian:
def to_bits(x):

return ZZ(x).digits(base=2, padto=sbox.n)
else:

def to_bits(x):
return ZZ(x).digits(base=2, padto=sbox.n)[::-1]

points = [to_bits(i) + to_bits(o)
for i in range(1 << n)
for o in range(1 << m)
if valid_transformations_matrix[i][o] != 0]

return Polyhedron(vertices=points)

def cutting_off_greedy(poly):
"""
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Computes a set of inequalities that is cutting-off equivalent to the
H-representation of the given convex hull.

INPUT:

- ‘‘poly‘‘ - the polyhedron representing the convex hull
"""
from sage.modules.free_module import VectorSpace
from sage.modules.free_module_element import vector
from sage.rings.finite_rings.finite_field_constructor import GF
from sage.modules.free_module_element import vector

chosen_ineqs = []

poly_points = poly.integral_points()
remaining_ineqs = list(poly.inequalities())
impossible = [vector(poly.base_ring(), v)

for v in VectorSpace(GF(2), poly.ambient_dim())
if v not in poly_points]

while impossible != []:

if len(remaining_ineqs) == 0:
raise ValueError("no more inequalities to choose, but still "\

"%d impossible points left" % len(impossible))

# find inequality in remaining_ineqs that cuts off the most
# impossible points and add this to the chosen_ineqs
ineqs = []
for i in remaining_ineqs:

cnt = sum(map(lambda x: not(i.contains(x)), impossible))
ineqs.append((cnt, i))

chosen_ineqs.append(sorted(ineqs, reverse=True)[0][1])

# remove ineq from remaining_ineqs
remaining_ineqs.remove(chosen_ineqs[-1])

# remove all cut off impossible points
impossible = [v

for v in impossible
if chosen_ineqs[-1].contains(v)
]

return chosen_ineqs

def cutting_off_milp(poly, number_of_ineqs=None, **kwargs):
"""
Computes a set of inequalities that is cutting-off equivalent to the
H-representation of the given convex hull by solving a MILP.

The representation can either be computed from the minimal number of
necessary inequalities, or by a given number of inequalities. This
second variant might be faster, because the MILP solver that later
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uses this representation can do some optimizations itself.

INPUT:

- ‘‘poly‘‘ - the polyhedron representing the convex hull
- ‘‘number_of_ineqs‘‘ - integer; either ‘None‘ (default) or the number

of inequalities that should be used for representing the S-box.

REFERENCES:

- [SasTod17]_ "New Algorithm for Modeling S-box in MILP Based
Differential and Division Trail Search"

"""

from sage.matrix.constructor import matrix
from sage.modules.free_module import VectorSpace
from sage.modules.free_module_element import vector
from sage.numerical.mip import MixedIntegerLinearProgram
from sage.rings.finite_rings.finite_field_constructor import GF

ineqs = list(poly.inequalities())
poly_points = poly.integral_points()
impossible = [vector(poly.base_ring(), v)

for v in VectorSpace(GF(2), poly.ambient_dim())
if v not in poly_points]

# precompute which inequality removes which impossible point
precomputation = matrix(

[[int(not(ineq.contains(p)))
for p in impossible]

for ineq in ineqs]
)

milp = MixedIntegerLinearProgram(maximization=False, **kwargs)
var_ineqs = milp.new_variable(binary=True, name="ineqs")

# either use the minimal number of inequalities for the representation
if number_of_ineqs is None:

milp.set_objective(sum([var_ineqs[i] for i in range(len(ineqs))]))
# or the given number
else:

milp.add_constraint(sum(
[var_ineqs[i]
for i in range(len(ineqs))]

) == number_of_ineqs)

nrows, ncols = precomputation.dimensions()
for c in range(ncols):

lhs = sum([var_ineqs[r]
for r in range(nrows)
if precomputation[r][c] == 1])

milp.add_constraint(lhs >= 1)
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milp.solve()

remaining_ineqs = [
ineq
for ineq, (var, val) in zip(ineqs, milp.get_values(var_ineqs).iteritems())
if val == 1

]

return remaining_ineqs

def milp_spook_sbox_constraints(milp, sbox, xi, yi):
sbox_ineqs = sbox.milp_inequalities(analysis="division_property", algorithm="greedy")

permuted_bits = matrix(ZZ, 4, 32, range(128)).columns()
in_outs = [([xi[i] for i in sbox_indices], [yi[i] for i in sbox_indices])

for sbox_indices in permuted_bits]

for ineq in sbox_ineqs:
for inputs, outputs in in_outs:

milp.add_constraint(sum([inputs[i] * ineq[i+1]
for i in range(len(inputs))] +

[outputs[i] * ineq[i+1+len(inputs)]
for i in range(len(outputs))]

) + ineq[0] >= 0)

def rotate(x, n):
return x[n:] + x[:n]

def copy2(milp, x, y0, y1):
for i in range(len(x)):

milp.add_constraint(x[i] - y0[i] - y1[i] == 0)

def copy3(milp, x, y0, y1, y2):
for i in range(len(x)):

milp.add_constraint(x[i] - y0[i] - y1[i] - y2[i] == 0)

def xor2(milp, x0, x1, y):
for i in range(len(x0)):

milp.add_constraint(x0[i] + x1[i] - y[i] == 0)

def milp_spook_llayer_constraints(milp, xi, yi, ai, bi, rnd=0):
s = milp.new_variable(binary=True, name="tmp_s")
t = milp.new_variable(binary=True, name="tmp_t")
u = milp.new_variable(binary=True, name="tmp_u")
v = milp.new_variable(binary=True, name="tmp_v")

s0 = [s[rnd, 0, i] for i in range(32)]
s1 = [s[rnd, 1, i] for i in range(32)]
s2 = [s[rnd, 2, i] for i in range(32)]
s3 = [s[rnd, 3, i] for i in range(32)]
s4 = [s[rnd, 4, i] for i in range(32)]
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s5 = [s[rnd, 5, i] for i in range(32)]
s6 = [s[rnd, 6, i] for i in range(32)]
s7 = [s[rnd, 7, i] for i in range(32)]

copy3(milp, xi, s0, s1, s2)
xor2(milp, s1, rotate(s2, 12), s3)
copy2(milp, s3, s4, s5)
xor2(milp, s4, rotate(s5, 3), s6)
xor2(milp, s6, rotate(s0, 17), s7)

t0 = [t[rnd, 0, i] for i in range(32)]
t1 = [t[rnd, 1, i] for i in range(32)]
t2 = [t[rnd, 2, i] for i in range(32)]
t3 = [t[rnd, 3, i] for i in range(32)]
t4 = [t[rnd, 4, i] for i in range(32)]
t5 = [t[rnd, 5, i] for i in range(32)]
t6 = [t[rnd, 6, i] for i in range(32)]
t7 = [t[rnd, 7, i] for i in range(32)]

copy3(milp, yi, t0, t1, t2)
xor2(milp, t1, rotate(t2, 12), t3)
copy2(milp, t3, t4, t5)
xor2(milp, t4, rotate(t5, 3), t6)
xor2(milp, t6, rotate(t0, 17), t7)

s8 = [s[rnd, 8, i] for i in range(32)]
s9 = [s[rnd, 9, i] for i in range(32)]
u0 = [u[rnd, 0, i] for i in range(32)]
u1 = [u[rnd, 1, i] for i in range(32)]
u2 = [u[rnd, 2, i] for i in range(32)]
u3 = [u[rnd, 3, i] for i in range(32)]
u4 = [u[rnd, 4, i] for i in range(32)]

copy3(milp, s7, s8, u0, u1)
xor2(milp, rotate(u0, 31), u1, u2)
copy2(milp, u2, u3, u4)
xor2(milp, s8, rotate(u3, 15), s9)

t8 = [t[rnd, 8, i] for i in range(32)]
t9 = [t[rnd, 9, i] for i in range(32)]
v0 = [v[rnd, 0, i] for i in range(32)]
v1 = [v[rnd, 1, i] for i in range(32)]
v2 = [v[rnd, 2, i] for i in range(32)]
v3 = [v[rnd, 3, i] for i in range(32)]
v4 = [v[rnd, 4, i] for i in range(32)]

copy3(milp, t7, t8, v0, v1)
xor2(milp, rotate(v0, 31), v1, v2)
copy2(milp, v2, v3, v4)
xor2(milp, t8, rotate(v3, 15), t9)

xor2(milp, s9, rotate(v4, 26), ai)



54 Spook

xor2(milp, t9, rotate(u4, 25), bi)

def milp_model_spook(initial_dp, rnds=1):
sbox = SBox([0, 8, 1, 15, 2, 10, 7, 9, 4, 13, 5, 6, 14, 3, 11, 12])

from itertools import product

# initialise MILP object
milp = MixedIntegerLinearProgram(maximization=False, solver="CPLEX")

# sbox layer inputs
xs = milp.new_variable(binary=True, name="x", indices=product(range(rnds), range(128)))
# sbox layer outputs / linear layer inputs
ys = milp.new_variable(binary=True, name="y", indices=product(range(rnds), range(128)))
# linear layer outputs
zs = milp.new_variable(binary=True, name="z", indices=product(range(rnds), range(128)))

# model for each round the sbox layer and linear layer transitions
for r in range(rnds):

xi = [xs[(r, i)] for i in range(128)]
yi = [ys[(r, i)] for i in range(128)]
milp_spook_sbox_constraints(milp, sbox, xi, yi)

yi = [[ys[(r, 32*j+i)] for i in range(32)] for j in range(4)]
zi = [[zs[(r, 32*j+i)] for i in range(32)] for j in range(4)]
milp_spook_llayer_constraints(milp, yi[0], yi[1], zi[0], zi[1], rnd=(r, 0))
milp_spook_llayer_constraints(milp, yi[2], yi[3], zi[2], zi[3], rnd=(r, 1))

# link each rounds output with next rounds input
if r < rnds-1:

for i in range(128):
milp.add_constraint(zs[(r, i)] == xs[(r+1, i)])

# Set input variables to initial division property
from sage.crypto.sbox import integer_types
if type(initial_dp) in integer_types + (Integer, ):

initial_dp = ZZ(initial_dp).digits(base=2, padto=128)
for i in range(128):

milp.add_constraint(xs[(0, i)] == initial_dp[i])

# Objective function is to minimize the weight of the output division property
milp.set_objective(sum(zs[(rnds-1, i)] for i in range(128)))

return milp, xs, ys, zs

def check_dp(rnds=1, milp_model=milp_model_spook, block_size=128):
from sage.numerical.mip import MIPSolverException

for i in range(block_size):
k = ((1<<block_size) - 1)^^(1<<i)
milp, xs, ys, zs = milp_model(initial_dp=k, rnds=rnds)
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cnt = 0
found_unit_vector = True
while found_unit_vector:

try:
obj = int(milp.solve())
inp = [int(x)

for x in milp.get_values([xs[( 0 , j)]
for j in range(block_size)])]

out = [int(x)
for x in milp.get_values([zs[(rnds-1, j)]

for j in range(block_size)])]

inpstr = "".join(map(lambda x:"%d" % x, inp))
outstr = "".join(map(lambda x:"%d" % x, out))

cnt += 1
print("%3d/%3d: %3d %s -> %s" % (i, cnt, obj, inpstr, outstr))

if obj > 1:
print("found a distinguisher:")
print("%3d: %3d %s -> %s" % (i, obj, inpstr, outstr))
return inp, out

else:
idx = out.index(1)
milp.add_constraint(zs[(rnds-1, idx)] == 0)

except MIPSolverException as e:
print("i = %d: no feasible solution" % i)
found_unit_vector = False

return None, None

if __name__ == "__main__":
import sys
if len(sys.argv) < 2:

print("Usage:\n%s rounds" % (sys.argv[0]))
sys.exit(1)

rounds = int(sys.argv[1])
check_dp(rounds, milp_model_spook, block_size=128)
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